import os import sys import bz2 import argparse from keras.utils import get_file from ffhq_dataset.face_alignment import image_align from ffhq_dataset.landmarks_detector import LandmarksDetector import multiprocessing def unpack_bz2(src_path): data = bz2.BZ2File(src_path).read() dst_path = src_path[:-4] with open(dst_path, 'wb') as fp: fp.write(data) return dst_path if __name__ == "__main__": """ Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step python align_images.py /raw_images /aligned_images """ parser = argparse.ArgumentParser(description='Align faces from input images', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('raw_dir', help='Directory with raw images for face alignment') parser.add_argument('aligned_dir', help='Directory for storing aligned images') parser.add_argument('--output_size', default=1024, help='The dimension of images for input to the model', type=int) parser.add_argument('--x_scale', default=1, help='Scaling factor for x dimension', type=float) parser.add_argument('--y_scale', default=1, help='Scaling factor for y dimension', type=float) parser.add_argument('--em_scale', default=0.1, help='Scaling factor for eye-mouth distance', type=float) parser.add_argument('--use_alpha', default=False, help='Add an alpha channel for masking', type=bool) args, other_args = parser.parse_known_args() landmarks_model_path = unpack_bz2("shape_predictor_68_face_landmarks.dat.bz2") RAW_IMAGES_DIR = args.raw_dir ALIGNED_IMAGES_DIR = args.aligned_dir landmarks_detector = LandmarksDetector(landmarks_model_path) for img_name in os.listdir(RAW_IMAGES_DIR): print('Aligning %s ...' % img_name) try: raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name) fn = face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], 1) if os.path.isfile(fn): continue print('Getting landmarks...') for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): try: print('Starting face alignment...') face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name) image_align(raw_img_path, aligned_face_path, face_landmarks, output_size=args.output_size, x_scale=args.x_scale, y_scale=args.y_scale, em_scale=args.em_scale, alpha=args.use_alpha) print('Wrote result %s' % aligned_face_path) except: print("Exception in face alignment!") except: print("Exception in landmark detection!")