--- license: apache-2.0 base_model: WinKawaks/vit-small-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-small-patch16-224-finetuned-eurosat results: [] --- # vit-small-patch16-224-finetuned-eurosat This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0415 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2917 | 1.0 | 351 | 0.0685 | 0.978 | | 0.2336 | 2.0 | 703 | 0.0490 | 0.9846 | | 0.1666 | 2.99 | 1053 | 0.0415 | 0.9858 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2