--- language: - en tags: - BERT - medical pipeline_tag: token-classification widget: - text: 63 year old woman with history of CAD presented to ER example_title: Example-1 - text: 63 year old woman diagnosed with CAD example_title: Example-2 --- # Model Card for Model ID base_model : [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) hidden_size : 768 max_position_embeddings : 512 num_attention_heads : 12 num_hidden_layers : 12 vocab_size : 30522 # Basic usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import numpy as np # match tag id2tag = {0:'O', 1:'B_MT', 2:'I_MT'} # load model & tokenizer MODEL_NAME = 'MDDDDR/bert_base_uncased_NER' model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # prepare input text = 'mental disorder can also contribute to the development of diabetes through various mechanism including increased stress, poor self care behavior, and adverse effect on glucose metabolism.' tokenized = tokenizer(text, return_tensors='pt') # forward pass output = model(**tokenized) # result pred = np.argmax(output[0].cpu().detach().numpy(), axis=2)[0][1:-1] # check pred for txt, pred in zip(tokenizer.tokenize(text), pred): print("{}\t{}".format(id2tag[pred], txt)) # B_MT mental # B_MT disorder ``` ## Framework versions - transformers : 4.39.1 - torch : 2.1.0+cu121 - datasets : 2.18.0 - tokenizers : 0.15.2 - numpy : 1.20.0