--- license: other base_model: google/gemma-2b tags: - generated_from_trainer metrics: - accuracy model-index: - name: gemma_2b_patent results: [] --- # gemma_2b_patent This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8299 - Accuracy: 0.7138 - F1 Macro: 0.6753 - F1 Micro: 0.7138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:| | 1.4602 | 0.13 | 50 | 1.3969 | 0.5022 | 0.3597 | 0.5022 | | 1.0803 | 0.26 | 100 | 1.0653 | 0.6256 | 0.5392 | 0.6256 | | 1.0025 | 0.38 | 150 | 0.9539 | 0.6728 | 0.6122 | 0.6728 | | 0.9107 | 0.51 | 200 | 0.9216 | 0.6872 | 0.6279 | 0.6872 | | 0.9144 | 0.64 | 250 | 0.8769 | 0.697 | 0.6581 | 0.697 | | 0.8844 | 0.77 | 300 | 0.8914 | 0.6924 | 0.6435 | 0.6924 | | 0.8721 | 0.9 | 350 | 0.8546 | 0.705 | 0.6553 | 0.705 | | 0.6636 | 1.02 | 400 | 0.8299 | 0.7138 | 0.6753 | 0.7138 | | 0.5654 | 1.15 | 450 | 0.8772 | 0.7056 | 0.6600 | 0.7056 | | 0.6037 | 1.28 | 500 | 0.8565 | 0.7082 | 0.6628 | 0.7082 | | 0.5781 | 1.41 | 550 | 0.8828 | 0.7 | 0.6543 | 0.7 | | 0.565 | 1.53 | 600 | 0.8785 | 0.703 | 0.6693 | 0.703 | | 0.6175 | 1.66 | 650 | 0.8799 | 0.7064 | 0.6579 | 0.7064 | | 0.565 | 1.79 | 700 | 0.8562 | 0.7114 | 0.6582 | 0.7114 | | 0.5752 | 1.92 | 750 | 0.8662 | 0.7046 | 0.6641 | 0.7046 | | 0.2302 | 2.05 | 800 | 0.9298 | 0.704 | 0.6587 | 0.704 | | 0.2034 | 2.17 | 850 | 1.0142 | 0.7 | 0.6601 | 0.7 | | 0.2071 | 2.3 | 900 | 1.0373 | 0.6912 | 0.6604 | 0.6912 | | 0.1889 | 2.43 | 950 | 1.0462 | 0.6982 | 0.6593 | 0.6982 | | 0.1642 | 2.56 | 1000 | 1.0561 | 0.6932 | 0.6577 | 0.6932 | | 0.1446 | 2.69 | 1050 | 1.0697 | 0.6966 | 0.6621 | 0.6966 | | 0.1334 | 2.81 | 1100 | 1.0655 | 0.698 | 0.6637 | 0.698 | | 0.1266 | 2.94 | 1150 | 1.0705 | 0.696 | 0.6625 | 0.696 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2