--- library_name: transformers license: cc-by-4.0 base_model: dccuchile/tulio-chilean-spanish-bert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Gestionabilidad-v3_batch32 results: [] --- # Gestionabilidad-v3_batch32 This model is a fine-tuned version of [dccuchile/tulio-chilean-spanish-bert](https://huggingface.co/dccuchile/tulio-chilean-spanish-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.9298 - Precision: 0.9300 - Recall: 0.9298 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.283 | 0.2289 | 500 | 0.2429 | 0.9044 | 0.9072 | 0.9044 | 0.9048 | | 0.2275 | 0.4579 | 1000 | 0.2073 | 0.9185 | 0.9185 | 0.9185 | 0.9183 | | 0.2066 | 0.6868 | 1500 | 0.1900 | 0.9187 | 0.9202 | 0.9187 | 0.9181 | | 0.1949 | 0.9158 | 2000 | 0.2105 | 0.9194 | 0.9213 | 0.9194 | 0.9187 | | 0.1657 | 1.1447 | 2500 | 0.1920 | 0.9263 | 0.9270 | 0.9263 | 0.9259 | | 0.1502 | 1.3736 | 3000 | 0.2021 | 0.9280 | 0.9279 | 0.9280 | 0.9279 | | 0.1412 | 1.6026 | 3500 | 0.1858 | 0.9298 | 0.9300 | 0.9298 | 0.9296 | | 0.1477 | 1.8315 | 4000 | 0.1950 | 0.9300 | 0.9304 | 0.9300 | 0.9301 | | 0.1296 | 2.0604 | 4500 | 0.2188 | 0.9303 | 0.9304 | 0.9303 | 0.9304 | | 0.1004 | 2.2894 | 5000 | 0.2367 | 0.9304 | 0.9305 | 0.9304 | 0.9305 | | 0.0958 | 2.5183 | 5500 | 0.2294 | 0.9305 | 0.9305 | 0.9305 | 0.9303 | | 0.1003 | 2.7473 | 6000 | 0.2394 | 0.9293 | 0.9299 | 0.9293 | 0.9290 | | 0.1029 | 2.9762 | 6500 | 0.2294 | 0.9321 | 0.9320 | 0.9321 | 0.9320 | | 0.0696 | 3.2051 | 7000 | 0.2727 | 0.9324 | 0.9324 | 0.9324 | 0.9322 | | 0.0619 | 3.4341 | 7500 | 0.2672 | 0.9287 | 0.9301 | 0.9287 | 0.9289 | | 0.0627 | 3.6630 | 8000 | 0.2897 | 0.9326 | 0.9329 | 0.9326 | 0.9327 | | 0.0639 | 3.8919 | 8500 | 0.2970 | 0.9322 | 0.9322 | 0.9322 | 0.9322 | | 0.0549 | 4.1209 | 9000 | 0.3230 | 0.9321 | 0.9322 | 0.9321 | 0.9321 | | 0.0409 | 4.3498 | 9500 | 0.3722 | 0.9313 | 0.9317 | 0.9313 | 0.9314 | | 0.0388 | 4.5788 | 10000 | 0.3326 | 0.9333 | 0.9335 | 0.9333 | 0.9333 | | 0.0373 | 4.8077 | 10500 | 0.3565 | 0.9332 | 0.9335 | 0.9332 | 0.9333 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0