from typing import Optional, Sequence, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss, functional from transformers import RobertaConfig from transformers.modeling_outputs import SequenceClassifierOutput from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPooler, RobertaPreTrainedModel class MishActivation(nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: return x * torch.tanh(torch.nn.functional.softplus(x)) class NFQAClassificationHead(nn.Module): def __init__( self, input_dim: int, num_labels: int, hidden_dims: Sequence[int] = (768, 512), dropout: float = 0.0, ) -> None: super().__init__() self.linear_layers = nn.Sequential(*(nn.Linear(input_dim, dim) for dim in hidden_dims)) self.classification_layer = torch.nn.Linear(hidden_dims[-1], num_labels) self.activations = [MishActivation()] * len(hidden_dims) self.dropouts = [torch.nn.Dropout(p=dropout)] * len(hidden_dims) def forward(self, inputs: torch.Tensor) -> torch.Tensor: output = inputs for layer, activation, dropout in zip(self.linear_layers, self.activations, self.dropouts): output = dropout(activation(layer(output))) return self.classification_layer(output) class RobertaNFQAClassification(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r'position_ids'] _DROPOUT = 0.0 def __init__(self, config: RobertaConfig): super().__init__(config) self.num_labels = config.num_labels self.config = config self.embedder = RobertaModel(config, add_pooling_layer=True) self.pooler = RobertaPooler(config) self.feedforward = NFQAClassificationHead(config.hidden_size, config.num_labels) self.dropout = torch.nn.Dropout(self._DROPOUT) self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.embedder( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.feedforward(self.dropout(self.pooler(sequence_output))) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )