{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff790cd1510>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675750956192933112, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOdf1D5EcFQ/g3qyPgAA9T3DJzg+5CmRPpm88b2ztYO/3r5KP9HdD74Wz1K/Zeb1PhWzFj8HVh0/3945P0vxcj94nrw/P7gpvY0C+r741JI+Xjkrvjy99L07scA/yxd7vsfYhr+eRgg/QbgEP0Ibez84cmC+vfLNPSTlID/5hZY/CC1Gv3AMOz+c1Ns+qw8DPhdHID8klxu/2RXKvswFGcAMsw2/McBIP1u/276Qh5Q/Jksbv1b4Sj/BdD0/0OQxvxP6Yb78J4S+pv3/vf5ZPD/H2Ia/nkYIP2zl9r9CG3s/K7CPvhg/pL1w2B8/N6WRP3uE3L/vpkU/NY3UPYKOMr+ENbI+jhpAvTOPCD+zPFI8BnEov4Nt6b8a5ZQ+0AdKv8aQDb81BJy/WCZjPxBa4j7IX02/MkArPimFhL/pDA8+bwBzP55GCD9BuAQ/k36Cv7XAjr2DglY/nmOvPrs8rz/aUy+/nSuRPx5bV7467fQ9aMHpPrarTL919m2/AMCaPaivC78LiY4/nZjMPVKMGb4B2L++Ju2iPy4Jtb0q4y4/zjWBPlKulr8MdQA/Wd4KP8fYhr+eRgg/QbgEP0Ibez+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAIh0w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADHe8vQAAAAD45Pq/AAAAADTo7j0AAAAA9Dv3PwAAAACEwHe9AAAAANej5z8AAAAAHr+9PAAAAAADQf2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshSiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKRop7wAAAAAX3npvwAAAAC8vgU+AAAAAG006D8AAAAAxC+tvAAAAAC9Z+c/AAAAAOA2l70AAAAAsMfvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAadEzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBVruA8AAAAAOHg3b8AAAAA6lpKPAAAAABZ5us/AAAAAMhByD0AAAAAk1n7PwAAAABmxX28AAAAAPje4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRxig2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqwHIvQAAAAAQvuW/AAAAAKnRMj0AAAAADPLjPwAAAABkAs+9AAAAAEIV+z8AAAAArgaOvQAAAABIqPO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ1oxsWO6uqMAWyUTegDjAF0lEdAqiGWU8mrsHV9lChoBkdAlNXk+gUUPGgHTegDaAhHQKoiNF4s3AF1fZQoaAZHQJ7IRLSNOudoB03oA2gIR0CqIvux0MgEdX2UKGgGR0CfILUPhAGCaAdN6ANoCEdAqishcLSeAnV9lChoBkdAn2bb1qWTo2gHTegDaAhHQKowxEit7rt1fZQoaAZHQJ2vuYVqN6xoB03oA2gIR0CqMWqptJnQdX2UKGgGR0CSaH2AG0NSaAdN6ANoCEdAqjH0hTwUg3V9lChoBkdAmSYwgxJumGgHTegDaAhHQKo3LjS5RTF1fZQoaAZHQJ2rJaiblRxoB03oA2gIR0CqPMKFh5PedX2UKGgGR0CeEO5IH1OCaAdN6ANoCEdAqj1rZWaMJnV9lChoBkdAm89XMUypJmgHTegDaAhHQKo+AAxzq8l1fZQoaAZHQJwXZ88cMmZoB03oA2gIR0CqRZHPVurIdX2UKGgGR0CdKmoo/iYLaAdN6ANoCEdAqkwpkCmuT3V9lChoBkdAnldCuhbno2gHTegDaAhHQKpMzBEa2nd1fZQoaAZHQJfbr9uP3i9oB03oA2gIR0CqTViONo8IdX2UKGgGR0CYbqQw9JSSaAdN6ANoCEdAqlLBlSS/03V9lChoBkdAm3FVvQ4S6GgHTegDaAhHQKpYW0j1PFh1fZQoaAZHQJf930WdmQNoB03oA2gIR0CqWPqi48U3dX2UKGgGR0CTsGBOYYzjaAdN6ANoCEdAqlmIKF7D23V9lChoBkdAmnijEvTPSmgHTegDaAhHQKpgLjOs1bd1fZQoaAZHQJsuzTy8SPFoB03oA2gIR0CqZ5A3Lmp3dX2UKGgGR0B9OFVU+9rXaAdN6ANoCEdAqmgzLfUF0XV9lChoBkdAmAtAfdRBNWgHTegDaAhHQKpoxXfZVXF1fZQoaAZHQJn4t0fYBeZoB03oA2gIR0Cqbgv6CUX6dX2UKGgGR0CbiBEDyOJdaAdN6ANoCEdAqnOfl8w6AHV9lChoBkdAnl51nRLK3mgHTegDaAhHQKp0PSUC7sh1fZQoaAZHQJJ8reCTUy5oB03oA2gIR0CqdMW+oLofdX2UKGgGR0CYryaef7JoaAdN6ANoCEdAqnqc4rBj4HV9lChoBkdAntS9x+8XemgHTegDaAhHQKqC0SwGGEh1fZQoaAZHQKAZYqCpWFNoB03oA2gIR0Cqg3a7EpAldX2UKGgGR0CcQhys0YTCaAdN6ANoCEdAqoP+c8TzunV9lChoBkdAnS05GOMl1WgHTegDaAhHQKqJTtj0+Tx1fZQoaAZHQJLlMeEIw/RoB03oA2gIR0Cqjs7bcoH+dX2UKGgGR0CaaLN9YwIuaAdN6ANoCEdAqo9r1M/QjXV9lChoBkdAl/0YgJTl1mgHTegDaAhHQKqP/FERaox1fZQoaAZHQJ35812q1gJoB03oA2gIR0CqlVCxVyWBdX2UKGgGR0Cbv8okzGgjaAdN6ANoCEdAqp18pTdcjnV9lChoBkdAe+sJRO1v22gHTegDaAhHQKqeci8Fpwl1fZQoaAZHQJksJPXTVlRoB03oA2gIR0CqnycriEQHdX2UKGgGR0CYh/zNliBoaAdN6ANoCEdAqqRV0cOsk3V9lChoBkdAkUktroGIK2gHTegDaAhHQKqp0+cpb2V1fZQoaAZHQJjY1+so2GZoB03oA2gIR0CqqnmUOd5IdX2UKGgGR0CbGuotL+PzaAdN6ANoCEdAqqsCOinHenV9lChoBkdAi7fsANoak2gHTegDaAhHQKqwSI/qxC91fZQoaAZHQJeomMwUQCloB03oA2gIR0Cqtz2Ifr8jdX2UKGgGR0CYcdzch1TzaAdN6ANoCEdAqrhC59Vmz3V9lChoBkdAmmvKGDcuamgHTegDaAhHQKq5HcE/0NB1fZQoaAZHQIN5m3Ytg8doB03oA2gIR0Cqv1sQumJndX2UKGgGR0CZnUfT1CgLaAdN6ANoCEdAqsTdENOM2nV9lChoBkdAml48pgCwKWgHTegDaAhHQKrFhPeHi3p1fZQoaAZHQJt4N54W1txoB03oA2gIR0CqxgzFl05mdX2UKGgGR0CaiEnFHaviaAdN6ANoCEdAqstvShJyyXV9lChoBkdAnAXqIFeOXGgHTegDaAhHQKrRd0yxiXp1fZQoaAZHQJdOPrkbPyFoB03oA2gIR0Cq0lvszEaVdX2UKGgGR0CHuu9zOopAaAdN6ANoCEdAqtM0NayKN3V9lChoBkdAi3b/e1rqMWgHTegDaAhHQKrakSIP9UF1fZQoaAZHQHWISq2jO9poB03oA2gIR0Cq4CHAAQxvdX2UKGgGR0CbjpZLZi/gaAdN6ANoCEdAquDCji4rjHV9lChoBkdAlZHgpazNU2gHTegDaAhHQKrhTEy+HrR1fZQoaAZHQJBXVWGRFJBoB005A2gIR0Cq5IcJUo8ZdX2UKGgGR0Cakr+kxh2GaAdN6ANoCEdAquw+ukk8inV9lChoBkdAmj+o9gWrO2gHTegDaAhHQKrs8jYZl4F1fZQoaAZHQJp2OLZSNwRoB03oA2gIR0Cq7b9XLeQ/dX2UKGgGR0CWSvUgjhUBaAdN6ANoCEdAqvKXRCx/u3V9lChoBkdAmGSrv1DjR2gHTegDaAhHQKr7i/KQq7R1fZQoaAZHQJVGDMW43FVoB03oA2gIR0Cq/C7JW/8EdX2UKGgGR0CSKq6bvw3HaAdN6ANoCEdAqvy+Cwr1/XV9lChoBkdAlisSOWBz3mgHTegDaAhHQKr/55mAbyZ1fZQoaAZHQJ19dC8e0XxoB03oA2gIR0CrB5gGr0aqdX2UKGgGR0CcGI0aIeo2aAdN6ANoCEdAqwg4gs9SuXV9lChoBkdAntBmRRuTA2gHTegDaAhHQKsIxHXEqDt1fZQoaAZHQJehvZpSJj5oB03oA2gIR0CrDO7CrLhadX2UKGgGR0CeVO6z3RG+aAdN6ANoCEdAqxaMrEtNBXV9lChoBkdAnWNnu3MINWgHTegDaAhHQKsXLitq59V1fZQoaAZHQJ+F34oJAt5oB03oA2gIR0CrF7lj/dZadX2UKGgGR0CaKE6AvtdBaAdN6ANoCEdAqxrcjcEeQ3V9lChoBkdAnAQS7Ciyp2gHTegDaAhHQKsidVAiV0N1fZQoaAZHQJ69w1pCa7VoB03oA2gIR0CrIxYVymygdX2UKGgGR0CROzZeRgZ1aAdN6ANoCEdAqyOhxR2r4nV9lChoBkdAnkoX5rP+oGgHTegDaAhHQKsm47/XGwR1fZQoaAZHQJ2CRoWYWtVoB03oA2gIR0CrMYKXWvr4dX2UKGgGR0CcX2p2ll9SaAdN6ANoCEdAqzIiTEBKc3V9lChoBkdAnSvmjTKDCmgHTegDaAhHQKsyrBRhttR1fZQoaAZHQJyPcarFOwhoB03oA2gIR0CrNds+NcW1dX2UKGgGR0Cdv4vP1L8KaAdN6ANoCEdAqz2Y0hvBJ3V9lChoBkdAm4gen/DLsGgHTegDaAhHQKs+NeJHiFV1fZQoaAZHQJ0HTPAwfyRoB03oA2gIR0CrPr7X6InCdX2UKGgGR0Cd0OkuHvc8aAdN6ANoCEdAq0HoctGutHV9lChoBkdAnpvuR1X/52gHTegDaAhHQKtMm/KQq7R1fZQoaAZHQJ4VjNHH3lFoB03oA2gIR0CrTTyjxkNGdX2UKGgGR0Cep5+6RQrMaAdN6ANoCEdAq03FNet0WHV9lChoBkdAnK4ogieNDWgHTegDaAhHQKtQ/28IzFd1fZQoaAZHQJ32v7xd6cBoB03oA2gIR0CrWLM+u/1ydX2UKGgGR0CbVJ4WUKRdaAdN6ANoCEdAq1lVTzd1uHV9lChoBkdAnFIUDU3GXGgHTegDaAhHQKtZ3WjGkvd1fZQoaAZHQJ0n9Qzk6tFoB03oA2gIR0CrXRLU1AJLdX2UKGgGR0CbGouZ1FH8aAdN6ANoCEdAq2cp75VOsXV9lChoBkdAmvkFPFefI2gHTegDaAhHQKtoJTDO1OV1fZQoaAZHQJ2cgZQ53khoB03oA2gIR0CraPvCEYfodX2UKGgGR0CazGc6NlyzaAdN6ANoCEdAq2xH3JxNqXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}