{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0d34af3cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683645729204772775, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABuYWz9emok/aNARv4KdQECtd8c/chgGPs2hMz8J8KW/a074Prciiz7/laY8czVzvCOAUL/8NjJAt254Pn2PnD6fbAc/Mi06P3fPfD9MWro/dGPrPx40mjt0iLo/0AMrPz26IMBwjKE+X7SDPtpQwT5x1FM/1czBP3Eaq7+EX2g/NBxhQPaWdsBU7/y94rJ2v7Xjtb5CJTs/O/YyP8Hmf0CsoUk/iZADwPCsKT8Hb5pAo3S7PwrwTj06bSa+774fvhn32jy4igDAfX+4PxUVjMA9uiDAN9ZKwF+0gz7aUME+udprPx75hj9gJAq/WIdvP/XVMEC4/bW+doLqPiUJz7/RXRQ/ojeBu8C70D9jW4Y/JWElPlFb3r/Zfjg/fdB8vpdnZj9TPEPAXTRLPxInoD+UYx0+5XhEQKrEYb9ITli8ft/LPnCMoT6ZzHjAR4EpwN/WT767ovM/qJARwHQAFb+sYpW+aJIDPu47lT5xRpW9rwBEvuxht71t/JM8XY2/vM0bs78GwyS9PUCuPvTcWTyS6hu/wPUZPV16BD/KUSw9sntgv56KCD0fOUy+BLeFvX7fyz5wjKE+X7SDPtpQwT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwpy21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvAuVvQAAAABFZva/AAAAAMoW0b0AAAAA4pL/PwAAAAAMYaO8AAAAAAN1/j8AAAAAJdyPvAAAAAAwOQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUl6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEScAT0AAAAA/5PyvwAAAAAfGwg9AAAAANah9j8AAAAAkA/EPQAAAADxKPc/AAAAAKNsib0AAAAArFPqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABurjTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9V27AAAAANZg7L8AAAAAEilwPQAAAAD5I+U/AAAAAK2qBz4AAAAATaLcPwAAAAALrbQ7AAAAAHQO3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/Ov21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9mrlPAAAAAD8qeK/AAAAAEcL1L0AAAAA4MHrPwAAAAD8KZ09AAAAAF6a6j8AAAAAMLPlPAAAAABK++K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaY6EJ0GNeMAWyUTegDjAF0lEdAqv5KiM5wO3V9lChoBkdAiwoY7aIvamgHTegDaAhHQKr+oMOwxFl1fZQoaAZHQJQTjtE5QxhoB03oA2gIR0CrAU8ujASGdX2UKGgGR0CV5sYzSCvpaAdN6ANoCEdAqwVlD6WPcXV9lChoBkdAlJ4z/ACW/2gHTegDaAhHQKsLW85CF9N1fZQoaAZHQJX9XUG3WnVoB03oA2gIR0CrC9tl7MPjdX2UKGgGR0CVpzzyjHn2aAdN6ANoCEdAqw/gNNJvpHV9lChoBkdAlTC0Dp1RtWgHTegDaAhHQKsUr3K0UoN1fZQoaAZHQJROkwaisXBoB03oA2gIR0CrGchas6q9dX2UKGgGR0CW1pd4VymzaAdN6ANoCEdAqxoe8AaNuXV9lChoBkdAkyaQqVhTfmgHTegDaAhHQKscmd92HL11fZQoaAZHQJZFmUVzp5hoB03oA2gIR0CrIMrpJPIodX2UKGgGR0CXBljmjj7zaAdN6ANoCEdAqyYNhd+ocnV9lChoBkdAliablmvnsGgHTegDaAhHQKsmk41gpjN1fZQoaAZHQJUiCmzjWCpoB03oA2gIR0CrKozQVsUJdX2UKGgGR0CT/pwPAfuDaAdN6ANoCEdAqzA9TR6WxHV9lChoBkdAlUx4ToMa0mgHTegDaAhHQKs1Z5C4SYh1fZQoaAZHQItonaURnOBoB03oA2gIR0CrNcGZE2HddX2UKGgGR0CWRwFId2gWaAdN6ANoCEdAqzhREH+qBHV9lChoBkdAlngAkka/AWgHTegDaAhHQKs8xX5nDix1fZQoaAZHQItND+vQnhNoB03oA2gIR0CrQisyrPt2dX2UKGgGR0CU1CI9kjHGaAdN6ANoCEdAq0KGDvmYB3V9lChoBkdAloO8KCxu9GgHTegDaAhHQKtGSYYzi0h1fZQoaAZHQJXfH0th/iJoB03oA2gIR0CrTFQhOgxrdX2UKGgGR0CWkmmAbyYpaAdN6ANoCEdAq1FTM7lq8HV9lChoBkdAljHtn9NvfmgHTegDaAhHQKtRp4+KTB91fZQoaAZHQJQsx9jPOY9oB03oA2gIR0CrVCRlYlpodX2UKGgGR0CVfvu9eyAyaAdN6ANoCEdAq1hRC6YmcHV9lChoBkdAl0FNtVJcxGgHTegDaAhHQKtdXiTdLxt1fZQoaAZHQJYEGy/sVtZoB03oA2gIR0CrXbJI1+AmdX2UKGgGR0CVzwK9f1HwaAdN6ANoCEdAq2CbL2YfGXV9lChoBkdAlptRiG34K2gHTegDaAhHQKtnKXF98Z11fZQoaAZHQJZWUmiQDFJoB03oA2gIR0CrbOkSmIj4dX2UKGgGR0CMmH/bTMJQaAdN6ANoCEdAq21BSLqD9XV9lChoBkdAlsFdJOFg2WgHTegDaAhHQKtvyA2hqTN1fZQoaAZHQJRKTCSA6MloB03oA2gIR0Crc/lEZzgddX2UKGgGR0CVQ5uwHJLeaAdN6ANoCEdAq3leuA7Pp3V9lChoBkdAla5Yr8R+SmgHTegDaAhHQKt5u70WdmR1fZQoaAZHQJYYtAC4jKRoB03oA2gIR0CrfFKUu+RHdX2UKGgGR0CQlpQJHAh0aAdN6ANoCEdAq4KPO2RaHXV9lChoBkdAlic01AJLNGgHTegDaAhHQKuIvZIQOFx1fZQoaAZHQJVrJdD6WPdoB03oA2gIR0CriRNMoMKDdX2UKGgGR0CTJuF2FFlTaAdN6ANoCEdAq4udFrl/6XV9lChoBkdAlHurteD3/WgHTegDaAhHQKuP5HaN+9d1fZQoaAZHQJYD0j6eoUBoB03oA2gIR0CrlQvYODradX2UKGgGR0CVfn1mapgkaAdN6ANoCEdAq5Vi4c3l0nV9lChoBkdAkpvx+SbH62gHTegDaAhHQKuX/y6MBIZ1fZQoaAZHQJWTIUXYUWVoB03oA2gIR0CrnY2fTTfBdX2UKGgGR0CU/cZbY9PlaAdN6ANoCEdAq6SPJtBOYnV9lChoBkdAjNuuYQarFWgHTegDaAhHQKuk5QJokAx1fZQoaAZHQJY56c2BJ7NoB03oA2gIR0Crp2VeruIAdX2UKGgGR0CTjUI2OyVwaAdN6ANoCEdAq6uJTER8MXV9lChoBkdAlWBL6P8ye2gHTegDaAhHQKuwsqXF98Z1fZQoaAZHQJXsCXD3ueBoB03oA2gIR0CrsQYlIEr5dX2UKGgGR0CQ6AEX+ERKaAdN6ANoCEdAq7OEYfnwHHV9lChoBkdAlGkE9+w1SGgHTegDaAhHQKu43BX0Xgt1fZQoaAZHQJTW0FLWZqpoB03oA2gIR0CrwH1iF0xNdX2UKGgGR0CVBORe1KGtaAdN6ANoCEdAq8DVy7wrlXV9lChoBkdAlgJftx+8XmgHTegDaAhHQKvDasaKk2x1fZQoaAZHQJTJPH5rP+poB03oA2gIR0Crx71WCEpRdX2UKGgGR0CVMP5S3solaAdN6ANoCEdAq8z6k690zXV9lChoBkdAk4YhTKkl/2gHTegDaAhHQKvNUGZ/kNp1fZQoaAZHQJTWj3VTaTRoB03oA2gIR0Crz+KnWJ7+dX2UKGgGR0CWXkVW0Z3taAdN6ANoCEdAq9SN4NZvDXV9lChoBkdAliLF2zOX3WgHTegDaAhHQKvchybx3FF1fZQoaAZHQJXXLtu1ndxoB03oA2gIR0Cr3Oa4+bExdX2UKGgGR0CW4goUzsQeaAdN6ANoCEdAq9+GFDfFaXV9lChoBkdAla3Ae/5+IGgHTegDaAhHQKvjvn27FsJ1fZQoaAZHQJVndubZvk1oB03oA2gIR0Cr6Nuf/WDpdX2UKGgGR0CTY90KZ2IPaAdN6ANoCEdAq+kxCfHxSnV9lChoBkdAlGZMqBmPHWgHTegDaAhHQKvr2IVuaWp1fZQoaAZHQJPBalyimEZoB03oA2gIR0Cr8AtrKvFFdX2UKGgGR0CV7uqxC6YmaAdN6ANoCEdAq/fujsUqQXV9lChoBkdAlHj4GY8dP2gHTegDaAhHQKv4chdt2s91fZQoaAZHQJNwdBt1p0xoB03oA2gIR0Cr+4Qn6VMVdX2UKGgGR0CU9PEJBw+/aAdN6ANoCEdAq//NfReC1HV9lChoBkdAk9usGPgeimgHTegDaAhHQKwE810DEFZ1fZQoaAZHQJP2ORSxZ+xoB03oA2gIR0CsBUfk3juKdX2UKGgGR0CR1ehnJ1aGaAdN6ANoCEdArAfTLbHp8nV9lChoBkdAlHX9D6WPcWgHTegDaAhHQKwMAEhaC+V1fZQoaAZHQJIt60/nnuBoB03oA2gIR0CsEuMGorFwdX2UKGgGR0CTEGoR7JGOaAdN6ANoCEdArBNmJFb3XnV9lChoBkdAlFBrL2YfGWgHTegDaAhHQKwXQeRPoFF1fZQoaAZHQJVdfsgMc6xoB03oA2gIR0CsG2xQaaTfdX2UKGgGR0CTLvnHeaa1aAdN6ANoCEdArCCG/k/8mHV9lChoBkdAlYDS5y2hI2gHTegDaAhHQKwg35GBnSR1fZQoaAZHQJYZlQ+EAYJoB03oA2gIR0CsI2mjCYTkdX2UKGgGR0CSqszfrKNiaAdN6ANoCEdArCekbDMvAXV9lChoBkdAlUfcry1/lWgHTegDaAhHQKwto8nNPgx1fZQoaAZHQJSOZKODJ2doB03oA2gIR0CsLioaLn9vdX2UKGgGR0CVK6jRD1GtaAdN6ANoCEdArDJFcMVk+XV9lChoBkdAlMg4NAkcCGgHTegDaAhHQKw3RKXfIjp1fZQoaAZHQJMk+NvOyFBoB03oA2gIR0CsPG9SMtK7dX2UKGgGR0CVQobdrO7haAdN6ANoCEdArDzEQRPGhnV9lChoBkdAlS1FiKBNEmgHTegDaAhHQKw/T2YfGMp1fZQoaAZHQJGv9zEJjUdoB03oA2gIR0CsQ31dgOSXdX2UKGgGR0CVKPPnjhkzaAdN6ANoCEdArEjPNFBppXV9lChoBkdAlOsxZEDyOWgHTegDaAhHQKxJThfBvaV1fZQoaAZHQJUV6rjo6jpoB03oA2gIR0CsTSbwazeGdX2UKGgGR0CT4H814xDcaAdN6ANoCEdArFMOAy2x6nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}