--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_without_preprocessing_grid_search results: [] --- # distilBERT_without_preprocessing_grid_search This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7297 - Precision: 0.8417 - Recall: 0.8510 - F1: 0.8460 - Accuracy: 0.8793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 257 | 0.4958 | 0.7757 | 0.8526 | 0.8027 | 0.8526 | | 0.6647 | 2.0 | 514 | 0.4756 | 0.8336 | 0.8480 | 0.8386 | 0.8701 | | 0.6647 | 3.0 | 771 | 0.4823 | 0.8197 | 0.8588 | 0.8360 | 0.8730 | | 0.2305 | 4.0 | 1028 | 0.5479 | 0.8314 | 0.8618 | 0.8439 | 0.8735 | | 0.2305 | 5.0 | 1285 | 0.5832 | 0.8295 | 0.8542 | 0.8401 | 0.8779 | | 0.1282 | 6.0 | 1542 | 0.5929 | 0.8251 | 0.8627 | 0.8404 | 0.8745 | | 0.1282 | 7.0 | 1799 | 0.7066 | 0.8476 | 0.8496 | 0.8472 | 0.8774 | | 0.0828 | 8.0 | 2056 | 0.6873 | 0.8392 | 0.8510 | 0.8448 | 0.8764 | | 0.0828 | 9.0 | 2313 | 0.7189 | 0.8410 | 0.8524 | 0.8461 | 0.8788 | | 0.0566 | 10.0 | 2570 | 0.7297 | 0.8417 | 0.8510 | 0.8460 | 0.8793 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3