--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_with_preprocessing_grid_search results: [] --- # BERT_with_preprocessing_grid_search This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9426 - Precision: 0.8396 - Recall: 0.8182 - F1: 0.8282 - Accuracy: 0.8655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9585 | 1.0 | 510 | 0.5849 | 0.7825 | 0.8293 | 0.8002 | 0.8473 | | 0.4334 | 2.0 | 1020 | 0.6323 | 0.8394 | 0.8127 | 0.8226 | 0.8625 | | 0.281 | 3.0 | 1530 | 0.5389 | 0.8259 | 0.8476 | 0.8348 | 0.8704 | | 0.2117 | 4.0 | 2040 | 0.7155 | 0.8381 | 0.8243 | 0.8297 | 0.8675 | | 0.1556 | 5.0 | 2550 | 0.6981 | 0.8420 | 0.8411 | 0.8414 | 0.8729 | | 0.1216 | 6.0 | 3060 | 0.9238 | 0.8441 | 0.8089 | 0.8237 | 0.8606 | | 0.108 | 7.0 | 3570 | 0.8514 | 0.8334 | 0.8215 | 0.8270 | 0.8645 | | 0.0817 | 8.0 | 4080 | 0.8539 | 0.8341 | 0.8245 | 0.8288 | 0.8660 | | 0.0659 | 9.0 | 4590 | 0.9233 | 0.8441 | 0.8202 | 0.8313 | 0.8655 | | 0.0588 | 10.0 | 5100 | 0.9426 | 0.8396 | 0.8182 | 0.8282 | 0.8655 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3