{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa27d10b180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5046272, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675278908531019038, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1YxbwrMDM/+6e1O+q/9r547Em83SV+PQAAAAAAAAAAM7FUPK71rrp8mZk6Z9hENzyRdzre+LC5AACAPwAAgD8aZ4C9/KeEP4Bq+L2GrQW/wrIYvn2oYTwAAAAAAAAAADMRB70UfJS6knMftKfQ2K+FW2G5TrqeMwAAgD8AAIA/zSIhvNU8cj4YKM48c4ZvvgVOxTwKFY08AAAAAAAAAABAUni+L5UKPyiIoD6O58y+4yvQvVp7nT4AAAAAAAAAAM0KML0Oh6A/Q8u1vYJ6Eb8B+V+9a/epvAAAAAAAAAAAzfyZvOE0j7r697s3lbF5MlgJl7ryOtq2AACAPwAAgD8zahO9ewKeuiZyS7KOnHqwSqPjuBJW3TIAAIA/AACAP83Ml7rvha8/RoMFvf8LHb+O6b25vUDWvAAAAAAAAAAAjVOJvelWVLweOEE8tuSEu2gYsj26yB8+AACAPwAAgD/mgZK91OvUPSkWuD7LA6a+bWcFPriOZD0AAAAAAAAAAGZO8zxRErs9Tm13vsHHib6pnd29zt9HPAAAAAAAAAAADeTLPSSegj+2yUU+hacCvy28Jz6mwH08AAAAAAAAAACayyA+7bh3PwLHrD70bBW/SpqnPmXA1j0AAAAAAAAAAEAM4712Rhy8B4IcPlw5tb3INQA9rimTPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISpo/pnUMc0CUhpRSlIwBbJRL0owBdJRHQLT49EUTL4h1fZQoaAZoCWgPQwgjg9xFGINzQJSGlFKUaBVLymgWR0C0+QON96TodX2UKGgGaAloD0MIxxAAHHt8b0CUhpRSlGgVS9toFkdAtPkLyoXKsHV9lChoBmgJaA9DCHuIRnfQ9HFAlIaUUpRoFUvUaBZHQLT5Tur6tT11fZQoaAZoCWgPQwhvnX+77BRuQJSGlFKUaBVL2WgWR0C0+VsVk+X7dX2UKGgGaAloD0MILV3BNqKzcUCUhpRSlGgVTQ8BaBZHQLT5kFQEZBN1fZQoaAZoCWgPQwiWW1oNSeRxQJSGlFKUaBVL8WgWR0C0+bkQkHD8dX2UKGgGaAloD0MIY2Adx09tcUCUhpRSlGgVS8toFkdAtPm/HaN+9nV9lChoBmgJaA9DCPW7sDVbwG5AlIaUUpRoFU0FAWgWR0C0+cy9ugpSdX2UKGgGaAloD0MIRUYHJOH8cECUhpRSlGgVS9doFkdAtPnXjENvwXV9lChoBmgJaA9DCLfrpSkCCHFAlIaUUpRoFUvTaBZHQLT54qlxffJ1fZQoaAZoCWgPQwh6jzNNGJFxQJSGlFKUaBVLzWgWR0C0+eYQvpQldX2UKGgGaAloD0MIguFcw8wzcUCUhpRSlGgVS+loFkdAtPnv6oESunV9lChoBmgJaA9DCIaqmEo/3W9AlIaUUpRoFUvuaBZHQLT6MTQVsUJ1fZQoaAZoCWgPQwiH3Aw3YONwQJSGlFKUaBVL5GgWR0C0+lvNqxkedX2UKGgGaAloD0MIW1t4XmpocUCUhpRSlGgVS8VoFkdAtPpuElE7XHV9lChoBmgJaA9DCB9kWTBxEXBAlIaUUpRoFUvpaBZHQLT6l1JUYKp1fZQoaAZoCWgPQwgtIR/07MRxQJSGlFKUaBVL52gWR0C0+p56yB07dX2UKGgGaAloD0MIMA+Z8iERc0CUhpRSlGgVS9FoFkdAtPrJZuAI6nV9lChoBmgJaA9DCP9cNGS8jXJAlIaUUpRoFUvTaBZHQLT61HRkVet1fZQoaAZoCWgPQwjOb5ho0D5xQJSGlFKUaBVLvWgWR0C0+wwHeJpGdX2UKGgGaAloD0MILQsm/ugvcUCUhpRSlGgVS8BoFkdAtPs2ZmZmZnV9lChoBmgJaA9DCCMVxhaCRXNAlIaUUpRoFUvNaBZHQLT7PEDyOJd1fZQoaAZoCWgPQwjknxnER5ZzQJSGlFKUaBVLyWgWR0C0+0AOavzOdX2UKGgGaAloD0MI/pyC/Ox2ckCUhpRSlGgVS/ZoFkdAtPtQxO+IuXV9lChoBmgJaA9DCDmYTYBh0W5AlIaUUpRoFUvaaBZHQLT7ZYGdI5J1fZQoaAZoCWgPQwhoz2VqEvBzQJSGlFKUaBVNBAFoFkdAtPuInpjc23V9lChoBmgJaA9DCIgRwqNNGHBAlIaUUpRoFUvtaBZHQLT7kE3Kji51fZQoaAZoCWgPQwjhYdo3dwZwQJSGlFKUaBVL2mgWR0C0+68jqv/zdX2UKGgGaAloD0MICTVDqqiYcECUhpRSlGgVS+FoFkdAtPvjNSqEOHV9lChoBmgJaA9DCANf0a1XoXNAlIaUUpRoFUv8aBZHQLT8JGecx0x1fZQoaAZoCWgPQwhNFCF1u6txQJSGlFKUaBVL4WgWR0C0/CfMfRu1dX2UKGgGaAloD0MIvhJIid06cECUhpRSlGgVS+loFkdAtPwxPVNHpnV9lChoBmgJaA9DCO1Ky0h9rHFAlIaUUpRoFUvPaBZHQLT8NeCkGiZ1fZQoaAZoCWgPQwguWRXhpqNyQJSGlFKUaBVLzGgWR0C0/DvKdQO4dX2UKGgGaAloD0MIN23GaUgHckCUhpRSlGgVS/NoFkdAtPysTg2qDXV9lChoBmgJaA9DCPX0EfhDBXBAlIaUUpRoFUvcaBZHQLT8ro1UEPl1fZQoaAZoCWgPQwjEJ51IcDtyQJSGlFKUaBVL42gWR0C0/LI6nzg/dX2UKGgGaAloD0MIgC2vXO/EcECUhpRSlGgVS/RoFkdAtPzSivgWJ3V9lChoBmgJaA9DCJBN8iO+PHBAlIaUUpRoFUvuaBZHQLT83WBBiTd1fZQoaAZoCWgPQwgBTYQNjzFxQJSGlFKUaBVL12gWR0C0/PPIsAeadX2UKGgGaAloD0MIw5ygTQ4LcUCUhpRSlGgVS9xoFkdAtP0CJpFkQXV9lChoBmgJaA9DCGfXvRVJ43FAlIaUUpRoFUv+aBZHQLT9D+ocaOx1fZQoaAZoCWgPQwj1KjI6IMdxQJSGlFKUaBVL3WgWR0C0/VZp8F6idX2UKGgGaAloD0MIKEnXTD5vckCUhpRSlGgVS/xoFkdAtP1WtOmBOHV9lChoBmgJaA9DCAcKvJNPEW5AlIaUUpRoFUvVaBZHQLT9iiu+yqx1fZQoaAZoCWgPQwh/SwD+aUZzQJSGlFKUaBVL0GgWR0C0/Y62BreqdX2UKGgGaAloD0MIRIXq5qIZckCUhpRSlGgVS9hoFkdAtP2YuuieunV9lChoBmgJaA9DCIs08Q5wlW9AlIaUUpRoFUvfaBZHQLT9sJx//ed1fZQoaAZoCWgPQwjY8V8gSCRwQJSGlFKUaBVL8WgWR0C0/bdlRP43dX2UKGgGaAloD0MIEmiwqfMEU0CUhpRSlGgVS4loFkdAtP258D0UXnV9lChoBmgJaA9DCO+OjNXmzUpAlIaUUpRoFUuiaBZHQLT+EGOuJUJ1fZQoaAZoCWgPQwjr46Hv7lduQJSGlFKUaBVL1WgWR0C0/hc8s+V1dX2UKGgGaAloD0MIwM5NmzG/cUCUhpRSlGgVS79oFkdAtP4zKU3XI3V9lChoBmgJaA9DCEykNJtH8XNAlIaUUpRoFUvoaBZHQLT+NkdFOO91fZQoaAZoCWgPQwjs20lE+HlyQJSGlFKUaBVL7WgWR0C0/j6suFpPdX2UKGgGaAloD0MIN8MN+Lz8cECUhpRSlGgVS+9oFkdAtP5pFa0Qb3V9lChoBmgJaA9DCDS/mgMEWnFAlIaUUpRoFUveaBZHQLT+gC6H0sh1fZQoaAZoCWgPQwgmcOtuHjZjQJSGlFKUaBVN6ANoFkdAtP6No7FKkHV9lChoBmgJaA9DCOm5ha7EiXNAlIaUUpRoFUu6aBZHQLT+vOerdWR1fZQoaAZoCWgPQwhvu9Bc5+hxQJSGlFKUaBVL2WgWR0C0/r2Pkq+bdX2UKGgGaAloD0MI304iwj+kb0CUhpRSlGgVS+JoFkdAtP7Mqaw2VHV9lChoBmgJaA9DCB7+mqyRonBAlIaUUpRoFUvUaBZHQLT+5wSamXR1fZQoaAZoCWgPQwgHXFfMSGByQJSGlFKUaBVL7WgWR0C0/xPrGBFvdX2UKGgGaAloD0MIy7kUV1UZcUCUhpRSlGgVS+RoFkdAtP8lV81Gb3V9lChoBmgJaA9DCPT91HhpbXFAlIaUUpRoFUv1aBZHQLT/N3I+4b11fZQoaAZoCWgPQwhGzsKe9idxQJSGlFKUaBVL+2gWR0C0/0vVmSQpdX2UKGgGaAloD0MI6iPwh5+kcUCUhpRSlGgVS9BoFkdAtP97Ysd1dXV9lChoBmgJaA9DCI21v7O9GXNAlIaUUpRoFUvjaBZHQLT/gb4Ju2t1fZQoaAZoCWgPQwgU0ETYsLxwQJSGlFKUaBVL72gWR0C0/5DX4CZGdX2UKGgGaAloD0MISWQfZBk3c0CUhpRSlGgVS+BoFkdAtP+YvHtF8XV9lChoBmgJaA9DCPOOU3SkB3BAlIaUUpRoFUvcaBZHQLT/mG21D0F1fZQoaAZoCWgPQwiWW1oNSbJwQJSGlFKUaBVLy2gWR0C0/7trwe/6dX2UKGgGaAloD0MIzeUGQ93McUCUhpRSlGgVS8xoFkdAtP/J5ooNNXV9lChoBmgJaA9DCGMOgo5Wo0ZAlIaUUpRoFUu4aBZHQLT/1ZTyaux1fZQoaAZoCWgPQwgxKNNoMkZxQJSGlFKUaBVL/2gWR0C0/+/4EfT1dX2UKGgGaAloD0MIzZTW35LgbkCUhpRSlGgVS9xoFkdAtQAKd07r9nV9lChoBmgJaA9DCKd5xym6anBAlIaUUpRoFUvvaBZHQLUANc1O0sx1fZQoaAZoCWgPQwi3fCQlPfVvQJSGlFKUaBVL0GgWR0C1AFLb1yvLdX2UKGgGaAloD0MIgnAFFOoRb0CUhpRSlGgVS9NoFkdAtQBoAaNuL3V9lChoBmgJaA9DCN+l1CVjYnNAlIaUUpRoFU0HAWgWR0C1AHjMvAXVdX2UKGgGaAloD0MI/bs+c9babkCUhpRSlGgVS99oFkdAtQCjFCLMtHV9lChoBmgJaA9DCGzp0VQP8XBAlIaUUpRoFUv3aBZHQLUAt7Ciypt1fZQoaAZoCWgPQwjJyFnY01xvQJSGlFKUaBVL1mgWR0C1AOH7+DODdX2UKGgGaAloD0MIkdWtntO3cUCUhpRSlGgVS+hoFkdAtQDop9ZzP3V9lChoBmgJaA9DCNUl4xhJrXFAlIaUUpRoFUv5aBZHQLUA/UONHYp1fZQoaAZoCWgPQwhxzLInwTRxQJSGlFKUaBVL/mgWR0C1AR0VBUrDdX2UKGgGaAloD0MIYr8n1umRcUCUhpRSlGgVS+JoFkdAtQEmpsGgSXV9lChoBmgJaA9DCKOutfepXnFAlIaUUpRoFUv/aBZHQLUBKmxdIG11fZQoaAZoCWgPQwiGV5I8189xQJSGlFKUaBVL52gWR0C1AUAVCXyBdX2UKGgGaAloD0MIXJGYoMZuckCUhpRSlGgVS8xoFkdAtQFBwn6VMXV9lChoBmgJaA9DCJDaxMl9mG5AlIaUUpRoFUv6aBZHQLUBavQnhKl1fZQoaAZoCWgPQwi54Az+Pp1xQJSGlFKUaBVL32gWR0C1AXyaqjrSdX2UKGgGaAloD0MIPxnjw6xycECUhpRSlGgVS95oFkdAtQHPRUm2LHV9lChoBmgJaA9DCOT2yyfrbnJAlIaUUpRoFUv2aBZHQLUB2ksz2vl1fZQoaAZoCWgPQwgbE2IuKfdvQJSGlFKUaBVL0GgWR0C1AhYKx9ofdX2UKGgGaAloD0MIKLhYUYOQcECUhpRSlGgVS/BoFkdAtQImnqFAV3V9lChoBmgJaA9DCJks7j8yeW5AlIaUUpRoFU0AAWgWR0C1Ai1XV9WqdX2UKGgGaAloD0MI8PrMWZ/WP0CUhpRSlGgVS4BoFkdAtQIs8ZDRdHV9lChoBmgJaA9DCAqGcw2znG9AlIaUUpRoFUvtaBZHQLUCZDJlrdp1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}