--- license: mit language: - en pipeline_tag: text-generation tags: - 'quantization ' - lora --- # LoftQ Initialization | [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) | LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W. This model, `LoftQ/Phi-3-mini-4k-instruct-4bit-64rank`, is obtained from [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). The backbone is under `LoftQ/Phi-3-mini-4k-instruct-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`. ## Model Info ### Backbone - Stored format: nf4 - Size: ~ 2.5 GiB - Loaded format: bitsandbytes nf4 - Size loaded on GPU: ~2.5 GiB ### LoRA adapters - rank: 64 - lora_alpha: 16 - target_modules: ["qkv_proj", "o_proj", "up_gate_proj", "down_proj"] - rank_pattern: {"qkv_proj": 192, "up_gate_proj": 128} ## Usage **Training** Here's an example of loading this model and preparing for the LoRA fine-tuning. ```python import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel MODEL_ID = "LoftQ/Phi-3-mini-4k-instruct-4bit-64rank" base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID) peft_model = PeftModel.from_pretrained( base_model, MODEL_ID, subfolder="loftq_init", is_trainable=True, ) # Do training with peft_model ... ``` See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ)) ## Citation ```bibtex @article{li2023loftq, title={Loftq: Lora-fine-tuning-aware quantization for large language models}, author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo}, journal={arXiv preprint arXiv:2310.08659}, year={2023} } ```