Delete .ipynb_checkpoints
Browse files
.ipynb_checkpoints/README-checkpoint.md
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
language:
|
4 |
-
- az
|
5 |
-
metrics:
|
6 |
-
- pearsonr
|
7 |
-
base_model:
|
8 |
-
- sentence-transformers/LaBSE
|
9 |
-
pipeline_tag: sentence-similarity
|
10 |
-
widget:
|
11 |
-
- source_sentence: Bu xoşbəxt bir insandır
|
12 |
-
sentences:
|
13 |
-
- Bu xoşbəxt bir itdir
|
14 |
-
- Bu çox xoşbəxt bir insandır
|
15 |
-
- Bu gün günəşli bir gündür
|
16 |
-
example_title: Sentence Similarity
|
17 |
-
tags:
|
18 |
-
- labse
|
19 |
-
---
|
20 |
-
|
21 |
-
# TEmA-small
|
22 |
-
|
23 |
-
This model is a fine-tuned version of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is specialized for sentence similarity tasks in Azerbaijan texts.
|
24 |
-
It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
## Benchmark Results
|
30 |
-
|
31 |
-
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model |
|
32 |
-
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------------------|
|
33 |
-
| 0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small |
|
34 |
-
| 0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 |
|
35 |
-
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 |
|
36 |
-
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct |
|
37 |
-
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | labse_stripped |
|
38 |
-
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large |
|
39 |
-
| 0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large |
|
40 |
-
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE |
|
41 |
-
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small |
|
42 |
-
| 0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 |
|
43 |
-
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base |
|
44 |
-
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm |
|
45 |
-
|
46 |
-
|
47 |
-
[STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
## Accuracy Results
|
53 |
-
- **Cosine Distance:** 96.63
|
54 |
-
- **Manhattan Distance:** 96.52
|
55 |
-
- **Euclidean Distance:** 96.57
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
## Usage
|
61 |
-
|
62 |
-
```python
|
63 |
-
from transformers import AutoTokenizer, AutoModel
|
64 |
-
import torch
|
65 |
-
|
66 |
-
# Mean Pooling - Take attention mask into account for correct averaging
|
67 |
-
def mean_pooling(model_output, attention_mask):
|
68 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
69 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
70 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
71 |
-
|
72 |
-
# Function to normalize embeddings
|
73 |
-
def normalize_embeddings(embeddings):
|
74 |
-
return embeddings / embeddings.norm(dim=1, keepdim=True)
|
75 |
-
|
76 |
-
# Sentences we want embeddings for
|
77 |
-
sentences = [
|
78 |
-
"Bu xoşbəxt bir insandır",
|
79 |
-
"Bu çox xoşbəxt bir insandır",
|
80 |
-
"Bu gün günəşli bir gündür"
|
81 |
-
]
|
82 |
-
|
83 |
-
# Load model from HuggingFace Hub
|
84 |
-
tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small')
|
85 |
-
model = AutoModel.from_pretrained('LocalDoc/TEmA-small')
|
86 |
-
|
87 |
-
# Tokenize sentences
|
88 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
89 |
-
|
90 |
-
# Compute token embeddings
|
91 |
-
with torch.no_grad():
|
92 |
-
model_output = model(**encoded_input)
|
93 |
-
|
94 |
-
# Perform pooling
|
95 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
96 |
-
|
97 |
-
# Normalize embeddings
|
98 |
-
sentence_embeddings = normalize_embeddings(sentence_embeddings)
|
99 |
-
|
100 |
-
# Calculate cosine similarities
|
101 |
-
cosine_similarities = torch.nn.functional.cosine_similarity(
|
102 |
-
sentence_embeddings[0].unsqueeze(0),
|
103 |
-
sentence_embeddings[1:],
|
104 |
-
dim=1
|
105 |
-
)
|
106 |
-
|
107 |
-
print("Cosine Similarities:")
|
108 |
-
for i, score in enumerate(cosine_similarities):
|
109 |
-
print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}")
|
110 |
-
```
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|