--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0424HMA21 results: [] --- # V0424HMA21 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7087 | 0.09 | 10 | 0.1473 | | 0.1506 | 0.18 | 20 | 0.1108 | | 0.1133 | 0.27 | 30 | 0.1019 | | 0.1011 | 0.36 | 40 | 0.0782 | | 0.0812 | 0.45 | 50 | 0.0733 | | 0.0826 | 0.54 | 60 | 0.0711 | | 0.078 | 0.63 | 70 | 0.0749 | | 0.0795 | 0.73 | 80 | 0.0884 | | 0.0828 | 0.82 | 90 | 0.0764 | | 0.0862 | 0.91 | 100 | 0.2925 | | 0.139 | 1.0 | 110 | 0.0806 | | 0.0759 | 1.09 | 120 | 0.1017 | | 0.1034 | 1.18 | 130 | 0.0768 | | 0.0777 | 1.27 | 140 | 0.0675 | | 0.0737 | 1.36 | 150 | 0.0729 | | 0.0768 | 1.45 | 160 | 0.0766 | | 0.0768 | 1.54 | 170 | 0.0676 | | 0.0689 | 1.63 | 180 | 0.0659 | | 0.0599 | 1.72 | 190 | 0.0638 | | 0.0599 | 1.81 | 200 | 0.0603 | | 0.0503 | 1.9 | 210 | 0.0587 | | 0.0444 | 1.99 | 220 | 0.0525 | | 0.0275 | 2.08 | 230 | 0.0535 | | 0.0215 | 2.18 | 240 | 0.0584 | | 0.0207 | 2.27 | 250 | 0.0554 | | 0.0205 | 2.36 | 260 | 0.0547 | | 0.0244 | 2.45 | 270 | 0.0533 | | 0.023 | 2.54 | 280 | 0.0511 | | 0.0192 | 2.63 | 290 | 0.0521 | | 0.0183 | 2.72 | 300 | 0.0516 | | 0.0236 | 2.81 | 310 | 0.0512 | | 0.0212 | 2.9 | 320 | 0.0510 | | 0.0189 | 2.99 | 330 | 0.0510 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1