--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0513HMAB2 results: [] --- # G0513HMAB2 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9285 | 0.09 | 10 | 1.9193 | | 1.9268 | 0.18 | 20 | 1.9150 | | 1.9047 | 0.27 | 30 | 1.8833 | | 1.8501 | 0.36 | 40 | 1.7905 | | 1.7172 | 0.45 | 50 | 1.6083 | | 1.4992 | 0.54 | 60 | 1.3297 | | 1.1821 | 0.63 | 70 | 0.9550 | | 0.748 | 0.73 | 80 | 0.5145 | | 0.3913 | 0.82 | 90 | 0.2609 | | 0.2021 | 0.91 | 100 | 0.1661 | | 0.1594 | 1.0 | 110 | 0.1513 | | 0.1462 | 1.09 | 120 | 0.1484 | | 0.1441 | 1.18 | 130 | 0.1473 | | 0.1453 | 1.27 | 140 | 0.1458 | | 0.1485 | 1.36 | 150 | 0.1448 | | 0.1407 | 1.45 | 160 | 0.1455 | | 0.1417 | 1.54 | 170 | 0.1428 | | 0.1421 | 1.63 | 180 | 0.1416 | | 0.1428 | 1.72 | 190 | 0.1438 | | 0.1398 | 1.81 | 200 | 0.1403 | | 0.1399 | 1.9 | 210 | 0.1392 | | 0.141 | 1.99 | 220 | 0.1394 | | 0.1377 | 2.08 | 230 | 0.1379 | | 0.1363 | 2.18 | 240 | 0.1374 | | 0.1352 | 2.27 | 250 | 0.1375 | | 0.1394 | 2.36 | 260 | 0.1375 | | 0.1362 | 2.45 | 270 | 0.1373 | | 0.1324 | 2.54 | 280 | 0.1369 | | 0.1317 | 2.63 | 290 | 0.1367 | | 0.133 | 2.72 | 300 | 0.1365 | | 0.1341 | 2.81 | 310 | 0.1364 | | 0.1346 | 2.9 | 320 | 0.1364 | | 0.1365 | 2.99 | 330 | 0.1364 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0