--- license: other base_model: nvidia/mit-b1 tags: - generated_from_keras_callback model-index: - name: Lit4pCol4b/mit-b1_segformer_ADE20k_RGB_IS_v1 results: [] --- # Lit4pCol4b/mit-b1_segformer_ADE20k_RGB_IS_v1 This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1835 - Validation Loss: 0.2237 - Validation Mean Iou: 0.6866 - Validation Mean Accuracy: 0.8243 - Validation Overall Accuracy: 0.9510 - Validation Accuracy Unlabeled: 0.5945 - Validation Accuracy Objeto Interes: 0.9077 - Validation Accuracy Agua: 0.9707 - Validation Iou Unlabeled: 0.3844 - Validation Iou Objeto Interes: 0.7151 - Validation Iou Agua: 0.9601 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Objeto Interes | Validation Accuracy Agua | Validation Iou Unlabeled | Validation Iou Objeto Interes | Validation Iou Agua | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:-----------------------------:|:----------------------------------:|:------------------------:|:------------------------:|:-----------------------------:|:-------------------:|:-----:| | 0.6580 | 0.6718 | 0.4196 | 0.6281 | 0.8767 | 0.0254 | 0.9466 | 0.9124 | 0.0232 | 0.3345 | 0.9012 | 0 | | 0.4551 | 0.5040 | 0.5131 | 0.6832 | 0.9126 | 0.1813 | 0.9216 | 0.9467 | 0.1234 | 0.4837 | 0.9322 | 1 | | 0.3472 | 0.2565 | 0.5381 | 0.6560 | 0.9375 | 0.1035 | 0.8839 | 0.9805 | 0.0930 | 0.5671 | 0.9542 | 2 | | 0.2846 | 0.2434 | 0.6188 | 0.7343 | 0.9442 | 0.3415 | 0.8847 | 0.9767 | 0.2514 | 0.6486 | 0.9564 | 3 | | 0.2383 | 0.2245 | 0.6401 | 0.7568 | 0.9469 | 0.4203 | 0.8735 | 0.9767 | 0.2975 | 0.6644 | 0.9586 | 4 | | 0.2075 | 0.2243 | 0.6606 | 0.7809 | 0.9501 | 0.4690 | 0.8975 | 0.9764 | 0.3332 | 0.6879 | 0.9608 | 5 | | 0.1943 | 0.1820 | 0.6721 | 0.7704 | 0.9559 | 0.4301 | 0.8964 | 0.9847 | 0.3423 | 0.7083 | 0.9658 | 6 | | 0.1835 | 0.2237 | 0.6866 | 0.8243 | 0.9510 | 0.5945 | 0.9077 | 0.9707 | 0.3844 | 0.7151 | 0.9601 | 7 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0