--- library_name: transformers license: mit language: - en - zh tags: - retrieval - multi-modal - knowledge-based visual question answering - FLMR - PreFLMR --- # PreFLMR model card PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus. ## Model Details PreFLMR_ViT-L_ENCN is based on PreFLMR_ViT-L, and the text_encoder is replaced with [bge-m3](https://huggingface.co/BAAI/bge-m3) for training. The training dataset includes [Chinese](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR_CN) and [English](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR) datasets. ### Model Description - **Model type:** FLMRModelForRetrieval - **Language(s) (NLP):** English Chinese - **License:** MIT License ### Paper and resources for more detail - **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/ - **Paper:** https://arxiv.org/abs/2402.08327 - **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/ - **Repository:** https://github.com/LinWeizheDragon/FLMR - **Project Page:** https://preflmr.github.io/ ## Uses ### Direct Use This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval usage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR). ### Downstream Use This model can be used combined with language models to create a retrieval-augmented language model. The use for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering) ## How to Get Started with the Model For details of training, indexing, and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR). ## Training datasets The model is pre-trained on three types of tasks with a total of nine datasets: 1. Image to Text retrieval: WIT, KVQA, and CC3M 2. Question to Text retrieval: MSMARCO 3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon. ## Evaluation datasets We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO. | Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT(EN) | WIT(CN) | LLaVA(EN) | LLaVA(CN) | OVEN(EN) | OVEN(CN) | KVQA(EN) | KVQA(CN) | Infoseek(EN) | Infoseek(CN) | EVQA(EN) | EVQA(CN) | OKVQA(EN) | OKVQA(CN) | MSMARCO(EN) | MSMARCO(CN) | | ------- | :------------- | ------------ | ------------------------------------------------------------ | ---------- | ------- | ------- | --------- | --------- | -------- | -------- | -------- | -------- | ------------ | ------------ | -------- | -------- | --------- | --------- | ----------- | ----------- | | PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 10.9 | 71.8 | 3.2 | 59.8 | 6.6 | 43.6 | 3.2 | 57.9 | 7.9 | 70.8 | 2.8 | 68.5 | 2.1 | 78.7 | 10.3 | | PreFLMR | Vit-L_ENCN | bge-m3 | [LinWeizheDragon/PreFLMR_ViT-L_ENCN](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L_ENCN) | 883M | 60.8 | 83.4 | 71.1 | 58.9 | 60.8 | 58.8 | 41.1 | 37.3 | 41.9 | 39.7 | 58.0 | 46.6 | 13.9 | 13.3 | 82.6 | 82.3 | For the evaluation metrics, WIT uses Recall@10 and all the rest datasets use Recall@5. ## Citation **BibTeX:** ``` @article{Lin_Mei_Chen_Byrne_2024, title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers}, url={http://arxiv.org/abs/2402.08327}, number={arXiv:2402.08327}, publisher={arXiv}, author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill}, year={2024}} ```