--- tags: - spacy - token-classification language: - en model-index: - name: en_ner_sender_recipient results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7942124225 - name: NER Recall type: recall value: 0.7429116388 - name: NER F Score type: f_score value: 0.767705961 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_sender_recipient` | | **Version** | `1.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (2 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `RECIPIENT`, `SENDER` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 76.77 | | `ENTS_P` | 79.42 | | `ENTS_R` | 74.29 | | `TOK2VEC_LOSS` | 172291.20 | | `NER_LOSS` | 173143.05 |