--- tags: - ltx-video - text-to-video - image-to-video pinned: true language: - en --- # LTX-Video Model Card This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video). ## Model Details - **Developed by:** Lightricks - **Model type:** Diffusion-based text-to-video and image-to-video generation model - **Language(s):** English - **Model Description:** LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. ## Usage ### Setup The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2. #### Installation ```bash git clone https://github.com/LightricksResearch/LTX-Video.git cd ltx_video-core # create env python -m venv env source env/bin/activate python -m pip install -e .\[inference-script\] ``` Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/LTX-Video) ```python from huggingface_hub import snapshot_download model_path = 'PATH' # The local directory to save downloaded checkpoint snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') ``` ### Inference #### Inference Code To use our model, please follow the inference code in `inference.py` at [https://github.com/LightricksResearch/LTX-Video/blob/main/inference.py](): For text-to-video generation: ```bash python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH ``` For image-to-video generation: ```python python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH ```