""" Input Embedding Layers """ import torch import torch.nn as nn import logging logger = logging.getLogger(__name__) try: import apex.normalization.fused_layer_norm.FusedLayerNorm as BertLayerNorm except (ImportError, AttributeError) as e: logger.info( "Better speed can be achieved with apex installed from " "https://www.github.com/nvidia/apex ." ) BertLayerNorm = torch.nn.LayerNorm class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(BertEmbeddings, self).__init__() #self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized # self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) # self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + token_type_embeddings + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings