--- license: apache-2.0 language: - en metrics: - f1 tags: - cell segmentation - stardist - hover-net library_name: transformers pipeline_tag: image-segmentation datasets: - Lewislou/cell_samples --- # Model Card for cell-seg-sribd This repository provides the solution of team Sribd-med for NeurIPS-CellSeg Challenge. The details of our method are described in our paper [Multi-stream Cell Segmentation with Low-level Cues for Multi-modality Images]. Some parts of the codes are from the baseline codes of the NeurIPS-CellSeg-Baseline repository, You can reproduce our method as follows step by step: ### How to Get Started with the Model Install requirements by python -m pip install -r requirements.txt ## Training Details ### Training Data The competition training and tuning data can be downloaded from https://neurips22-cellseg.grand-challenge.org/dataset/ Besides, you can download three publiced data from the following link: Cellpose: https://www.cellpose.org/dataset Omnipose: http://www.cellpose.org/dataset_omnipose Sartorius: https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview ## Environments and Requirements: Install requirements by ```shell python -m pip install -r requirements.txt ``` ### How to use Here is how to use this model: ```python from skimage import io, segmentation, morphology, measure, exposure from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig import numpy as np import tifffile as tif import requests import torch img_name = 'cell_00023.tiff' def normalize_channel(img, lower=1, upper=99): non_zero_vals = img[np.nonzero(img)] percentiles = np.percentile(non_zero_vals, [lower, upper]) if percentiles[1] - percentiles[0] > 0.001: img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8') else: img_norm = img return img_norm.astype(np.uint8) if img_name.endswith('.tif') or img_name.endswith('.tiff'): img_data = tif.imread(img_name) else: img_data = io.imread(img_name) # normalize image data if len(img_data.shape) == 2: img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1) elif len(img_data.shape) == 3 and img_data.shape[-1] > 3: img_data = img_data[:,:, :3] else: pass pre_img_data = np.zeros(img_data.shape, dtype=np.uint8) for i in range(3): img_channel_i = img_data[:,:,i] if len(img_channel_i[np.nonzero(img_channel_i)])>0: pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99) #dummy_input = np.zeros((512,512,3)).astype(np.uint8) my_model = MultiStreamCellSegModel.from_pretrained("Lewislou/cellseg_sribd") checkpoints = torch.load('model.pt') my_model.__init__(ModelConfig()) my_model.load_checkpoints(checkpoints) with torch.no_grad(): output = my_model(pre_img_data) ```