import os join = os.path.join import argparse import numpy as np import torch import monai import torch.nn as nn from utils import sliding_window_inference #from baseline.models.unetr2d import UNETR2D import time from stardist import dist_to_coord, non_maximum_suppression, polygons_to_label from stardist import random_label_cmap,ray_angles from stardist import star_dist,edt_prob from skimage import io, segmentation, morphology, measure, exposure import tifffile as tif import cv2 from overlay import visualize_instances_map from models.flexible_unet import FlexibleUNet from models.flexible_unet_convext import FlexibleUNetConvext def normalize_channel(img, lower=1, upper=99): non_zero_vals = img[np.nonzero(img)] percentiles = np.percentile(non_zero_vals, [lower, upper]) if percentiles[1] - percentiles[0] > 0.001: img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8') else: img_norm = img return img_norm.astype(np.uint8) def main(): parser = argparse.ArgumentParser('Baseline for Microscopy image segmentation', add_help=False) # Dataset parameters #parser.add_argument('-i', '--input_path', default='./inputs', type=str, help='training data path; subfolders: images, labels') #parser.add_argument("-o", '--output_path', default='./outputs', type=str, help='output path') parser.add_argument('--model_path', default='./work_dir/swinunetr_3class', help='path where to save models and segmentation results') parser.add_argument('--show_overlay', required=False, default=False, action="store_true", help='save segmentation overlay') # Model parameters parser.add_argument('--model_name', default='efficientunet', help='select mode: unet, unetr, swinunetr') parser.add_argument('--num_class', default=3, type=int, help='segmentation classes') parser.add_argument('--input_size', default=512, type=int, help='segmentation classes') args = parser.parse_args() input_path = '/home/data/TuningSet/' output_path = '/home/data/output/' overlay_path = '/home/data/overlay/' img_names = sorted(os.listdir(join(input_path))) n_rays = 32 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if args.model_name.lower() == "efficientunet": model = FlexibleUNetConvext( in_channels=3, out_channels=n_rays+1, backbone='convnext_small', pretrained=True, ).to(device) sigmoid = nn.Sigmoid() checkpoint = torch.load('/home/louwei/stardist_convnext/efficientunet_3class/best_model.pth', map_location=torch.device(device)) model.load_state_dict(checkpoint['model_state_dict']) #%% roi_size = (args.input_size, args.input_size) sw_batch_size = 4 model.eval() with torch.no_grad(): for img_name in img_names: print(img_name) if img_name.endswith('.tif') or img_name.endswith('.tiff'): img_data = tif.imread(join(input_path, img_name)) else: img_data = io.imread(join(input_path, img_name)) # normalize image data if len(img_data.shape) == 2: img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1) elif len(img_data.shape) == 3 and img_data.shape[-1] > 3: img_data = img_data[:,:, :3] else: pass pre_img_data = np.zeros(img_data.shape, dtype=np.uint8) for i in range(3): img_channel_i = img_data[:,:,i] if len(img_channel_i[np.nonzero(img_channel_i)])>0: pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99) t0 = time.time() #test_npy01 = pre_img_data/np.max(pre_img_data) test_npy01 = pre_img_data test_tensor = torch.from_numpy(np.expand_dims(test_npy01, 0)).permute(0,3,1,2).type(torch.FloatTensor).to(device) output_dist,output_prob = sliding_window_inference(test_tensor, roi_size, sw_batch_size, model) #test_pred_out = torch.nn.functional.softmax(test_pred_out, dim=1) # (B, C, H, W) prob = output_prob[0][0].cpu().numpy() dist = output_dist[0].cpu().numpy() dist = np.transpose(dist,(1,2,0)) dist = np.maximum(1e-3, dist) points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4) coord = dist_to_coord(disti,points) star_label = polygons_to_label(disti, points, prob=probi,shape=prob.shape) tif.imwrite(join(output_path, img_name.split('.')[0]+'_label.tiff'), star_label) overlay = visualize_instances_map(pre_img_data,star_label) cv2.imwrite(join(overlay_path, img_name.split('.')[0]+'.png'), cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR)) if __name__ == "__main__": main()