--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 230.81 +/- 20.92 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'path': '/content/drive/MyDrive/Colab Notebooks/HuggingFace/RL/Unit08' 'name': 'ppo-LunaLander_1.pt' 'env-id': 'LunarLander-v2' 'agent_properties': {'num_layers': 2 'hidden': 128 'activation': 'Tanh'} 'seed': '' 'device': 'cuda' 'total_timesteps': 100000 'num_steps': 32768 'batch_size': 64 'update_epochs': 2 'learning_rate': 1e-05 'lr_schedule': 'Exp' 'lr_final': 1e-06 'gamma': 0.995 'gae_lambda': 0.99 'norm_adv': 'True' 'clip_coef': 0.2 'clip_vloss': 'False' 'entropy_loss_coef': 0.01 'value_loss_coef': 0.5 'max_grad_norm': 0.5 'n_eval_episodes': 10} ```