from torch import nn import torch class DeepLOB(nn.Module): def __init__(self): super().__init__() # convolution blocks self.conv1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(1, 2), stride=(1, 2)), nn.LeakyReLU(negative_slope=0.01), # nn.Tanh(), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(32), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 2), stride=(1, 2)), nn.Tanh(), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.Tanh(), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.Tanh(), nn.BatchNorm2d(32), ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 10)), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(4, 1)), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(32), ) # inception modules self.inp1 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 1), padding='same'), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(64), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 1), padding='same'), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(64), ) self.inp2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 1), padding='same'), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(64), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(5, 1), padding='same'), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(64), ) self.inp3 = nn.Sequential( nn.MaxPool2d((3, 1), stride=(1, 1), padding=(1, 0)), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 1), padding='same'), nn.LeakyReLU(negative_slope=0.01), nn.BatchNorm2d(64), ) # lstm layers self.lstm = nn.LSTM(input_size=192, hidden_size=64, num_layers=1, batch_first=True) self.fc1 = nn.Linear(64, 3) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x[:, None, :, :] # none stands for the channel x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x_inp1 = self.inp1(x) x_inp2 = self.inp2(x) x_inp3 = self.inp3(x) x = torch.cat((x_inp1, x_inp2, x_inp3), dim=1) # x = torch.transpose(x, 1, 2) x = x.permute(0, 2, 1, 3) x = torch.reshape(x, (-1, x.shape[1], x.shape[2])) out, _ = self.lstm(x) out = out[:, -1, :] out = self.fc1(out) out = self.softmax(out) return out