--- datasets: - oscar-corpus/OSCAR-2301 - wikipedia - bjoernp/tagesschau-2018-2023 language: - en - de library_name: transformers pipeline_tag: text-generation license: llama2 --- # LAION LeoLM 70b: **L**inguistically **E**nhanced **O**pen **L**anguage **M**odel Meet LeoLM, the first open and commercially available German Foundation Language Model built on Llama-2. Our models extend Llama-2's capabilities into German through continued pretraining on a large corpus of German-language and mostly locality specific text. Thanks to a compute grant at HessianAI's new supercomputer **42**, we release a series foundation models trained with 8k context length under the [Llama-2 community license](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt). Now, we're finally releasing the much anticipated `leo-hessianai-70b`, the largest model of this series based on `Llama-2-70b`. With this release, we hope to bring a new wave of opportunities to German open-source and commercial LLM research and accelerate adoption. Read our [blog post](https://laion.ai/blog/leo-lm/) or our paper (preprint coming soon) for more details! *A project by Björn Plüster and Christoph Schuhmann in collaboration with LAION and HessianAI.* ## Model Details - **Finetuned from:** [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) - **Model type:** Causal decoder-only transformer language model - **Language:** English and German - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) - **Contact:** [LAION Discord](https://discord.com/invite/eq3cAMZtCC) or [Björn Plüster](mailto:bjoern.pl@outlook.de) ## Use in 🤗Transformers First install direct dependencies: ``` pip install transformers torch ``` Then load the model in transformers. Note that this requires lots of VRAM and most-likely multiple devices. Use `load_in_8bit=True` or `load_in_4bit=True` to save some memory by using a quantized version. For more quantized versions, check out our models at TheBloke's page: (coming soon!) ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained( model="LeoLM/leo-hessianai-70b", device_map="auto", torch_dtype=torch.bfloat16, use_flash_attention_2=False # Set to true to use FA2. Requires `pip install flash-attn` ) ``` ## Training parameters ![training_parameters](imgs/hyperparams.png "Training Hyperparameters") ## Benchmarks ![benchmarks](imgs/benchmarks.png "Benchmark Scores") ![benchmarks](imgs/translation_scores.png "Translation Benchmark Scores")