--- base_model: colorfulscoop/sbert-base-ja library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:601 - loss:CoSENTLoss widget: - source_sentence: だれかが魔法で花をぬいぐるみに変えた sentences: - 誰かが魔法の呪文で花をぬいぐるみに変えた - 村長は誰? - どこ? - source_sentence: 暖炉にスカーフを置いた? sentences: - 魔法をかけられる人 - ロウソク - 晩ご飯のとき - source_sentence: あほ sentences: - 調子はどう? - きらい - オッケー - source_sentence: 猫のぬいぐるみ sentences: - 赤い染みが皿にあった - 好きじゃないの? - ぬいぐるみ - source_sentence: リリアンはどんな呪文が使えるの? sentences: - あなたは魔法使い? - 姿かたちを変える魔法 - どのくらいのサイズ? model-index: - name: SentenceTransformer based on colorfulscoop/sbert-base-ja results: - task: type: binary-classification name: Binary Classification dataset: name: custom arc semantics data jp type: custom-arc-semantics-data-jp metrics: - type: cosine_accuracy value: 0.9090909090909091 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.4785935878753662 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9341317365269461 name: Cosine F1 - type: cosine_f1_threshold value: 0.4785935878753662 name: Cosine F1 Threshold - type: cosine_precision value: 0.9176470588235294 name: Cosine Precision - type: cosine_recall value: 0.9512195121951219 name: Cosine Recall - type: cosine_ap value: 0.9287829842425579 name: Cosine Ap - type: dot_accuracy value: 0.9008264462809917 name: Dot Accuracy - type: dot_accuracy_threshold value: 234.1079864501953 name: Dot Accuracy Threshold - type: dot_f1 value: 0.9302325581395349 name: Dot F1 - type: dot_f1_threshold value: 209.4735870361328 name: Dot F1 Threshold - type: dot_precision value: 0.8888888888888888 name: Dot Precision - type: dot_recall value: 0.975609756097561 name: Dot Recall - type: dot_ap value: 0.9635932205663708 name: Dot Ap - type: manhattan_accuracy value: 0.9008264462809917 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 558.378173828125 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.9302325581395349 name: Manhattan F1 - type: manhattan_f1_threshold value: 580.81640625 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8888888888888888 name: Manhattan Precision - type: manhattan_recall value: 0.975609756097561 name: Manhattan Recall - type: manhattan_ap value: 0.92846470083454 name: Manhattan Ap - type: euclidean_accuracy value: 0.9090909090909091 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 24.130870819091797 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.9341317365269461 name: Euclidean F1 - type: euclidean_f1_threshold value: 24.130870819091797 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.9176470588235294 name: Euclidean Precision - type: euclidean_recall value: 0.9512195121951219 name: Euclidean Recall - type: euclidean_ap value: 0.9287963056027329 name: Euclidean Ap - type: max_accuracy value: 0.9090909090909091 name: Max Accuracy - type: max_accuracy_threshold value: 558.378173828125 name: Max Accuracy Threshold - type: max_f1 value: 0.9341317365269461 name: Max F1 - type: max_f1_threshold value: 580.81640625 name: Max F1 Threshold - type: max_precision value: 0.9176470588235294 name: Max Precision - type: max_recall value: 0.975609756097561 name: Max Recall - type: max_ap value: 0.9635932205663708 name: Max Ap --- # SentenceTransformer based on colorfulscoop/sbert-base-ja This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc") # Run inference sentences = [ 'リリアンはどんな呪文が使えるの?', '姿かたちを変える魔法', 'どのくらいのサイズ?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `custom-arc-semantics-data-jp` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.9091 | | cosine_accuracy_threshold | 0.4786 | | cosine_f1 | 0.9341 | | cosine_f1_threshold | 0.4786 | | cosine_precision | 0.9176 | | cosine_recall | 0.9512 | | cosine_ap | 0.9288 | | dot_accuracy | 0.9008 | | dot_accuracy_threshold | 234.108 | | dot_f1 | 0.9302 | | dot_f1_threshold | 209.4736 | | dot_precision | 0.8889 | | dot_recall | 0.9756 | | dot_ap | 0.9636 | | manhattan_accuracy | 0.9008 | | manhattan_accuracy_threshold | 558.3782 | | manhattan_f1 | 0.9302 | | manhattan_f1_threshold | 580.8164 | | manhattan_precision | 0.8889 | | manhattan_recall | 0.9756 | | manhattan_ap | 0.9285 | | euclidean_accuracy | 0.9091 | | euclidean_accuracy_threshold | 24.1309 | | euclidean_f1 | 0.9341 | | euclidean_f1_threshold | 24.1309 | | euclidean_precision | 0.9176 | | euclidean_recall | 0.9512 | | euclidean_ap | 0.9288 | | max_accuracy | 0.9091 | | max_accuracy_threshold | 558.3782 | | max_f1 | 0.9341 | | max_f1_threshold | 580.8164 | | max_precision | 0.9176 | | max_recall | 0.9756 | | **max_ap** | **0.9636** | ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 601 training samples * Columns: text1, text2, and label * Approximate statistics based on the first 601 samples: | | text1 | text2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:------------------------|:----------------------|:---------------| | どっちがいいと思う? | どっちが欲しい? | 1 | | かわいいね | ばか | 0 | | 別のは選べないの? | なにが欲しい? | 0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### csv * Dataset: csv * Size: 601 evaluation samples * Columns: text1, text2, and label * Approximate statistics based on the first 601 samples: | | text1 | text2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:-----------------------|:------------------------|:---------------| | 誰かが魔法を使った | 誰かがが魔法をかけた | 1 | | これが花 | ぬいぐるみが花 | 1 | | 夜ご飯を作る前 | 夜ご飯を食べる前 | 1 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `learning_rate`: 2e-05 - `num_train_epochs`: 13 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 13 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap | |:-------:|:----:|:-------------:|:------:|:-----------------------------------:| | None | 0 | - | - | 0.8596 | | 1.0167 | 61 | 2.775 | 2.0852 | 0.8927 | | 2.0167 | 122 | 1.213 | 1.7433 | 0.9291 | | 3.0167 | 183 | 0.5703 | 1.5724 | 0.9379 | | 4.0167 | 244 | 0.4603 | 1.6239 | 0.9432 | | 5.0167 | 305 | 0.3672 | 1.6444 | 0.9523 | | 6.0167 | 366 | 0.2947 | 1.6222 | 0.9603 | | 7.0167 | 427 | 0.2255 | 1.7302 | 0.9619 | | 8.0167 | 488 | 0.1678 | 1.7360 | 0.9633 | | 9.0167 | 549 | 0.1163 | 1.8029 | 0.9620 | | 10.0167 | 610 | 0.0706 | 1.8986 | 0.9639 | | 11.0167 | 671 | 0.0389 | 1.9671 | 0.9624 | | 12.0167 | 732 | 0.0333 | 2.0375 | 0.9636 | | 12.8 | 780 | 0.0618 | 1.9938 | 0.9636 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.0 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```