#load model from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle model = load_model("model.h5") #load tokenizer with open("tokenizer.pkl","rb") as handle: tokenizer = pickle.load(handle) #make predictions # Make predictions while True: text = input("write a review, press e to exit: ") if text == 'e': break TokenText = tokenizer.texts_to_sequences([text]) PadText = pad_sequences(TokenText, maxlen=100) Pred = model.predict(PadText) Pred_float = Pred[0][0] # Extract the single float value Pred_float *= 1.3 binary_pred = (Pred_float > 0.5).astype(int) if binary_pred == 0: print("bad review") else: print("good review") print(Pred_float)