|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import cv2 |
|
|
import json |
|
|
from tqdm import tqdm |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
images_dir = "newimgs/images" |
|
|
masks_dir = "newimgs/masks" |
|
|
output_json = "annotations.json" |
|
|
|
|
|
|
|
|
coco = { |
|
|
"images": [], |
|
|
"annotations": [], |
|
|
"categories": [{"id": 1, "name": "leaf"}] |
|
|
} |
|
|
|
|
|
ann_id = 1 |
|
|
img_id = 1 |
|
|
|
|
|
for fname in tqdm(os.listdir(images_dir)): |
|
|
if fname.lower().endswith((".jpg", ".jpeg", ".png")): |
|
|
name = os.path.splitext(fname)[0] |
|
|
img_path = os.path.join(images_dir, fname) |
|
|
mask_path = os.path.join(masks_dir, name + ".png") |
|
|
|
|
|
if not os.path.exists(mask_path): |
|
|
print(f" No mask for {fname}, skipping...") |
|
|
continue |
|
|
|
|
|
|
|
|
img = Image.open(img_path).convert("RGB") |
|
|
w, h = img.size |
|
|
mask = cv2.imread(mask_path, 0) |
|
|
|
|
|
|
|
|
_, mask_bin = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY) |
|
|
|
|
|
|
|
|
coco["images"].append({ |
|
|
"id": img_id, |
|
|
"file_name": fname, |
|
|
"width": w, |
|
|
"height": h |
|
|
}) |
|
|
|
|
|
|
|
|
contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
|
for c in contours: |
|
|
if len(c) < 6: |
|
|
continue |
|
|
|
|
|
segmentation = c.flatten().tolist() |
|
|
x, y, w_box, h_box = cv2.boundingRect(c) |
|
|
|
|
|
coco["annotations"].append({ |
|
|
"id": ann_id, |
|
|
"image_id": img_id, |
|
|
"category_id": 1, |
|
|
"segmentation": [segmentation], |
|
|
"bbox": [x, y, w_box, h_box], |
|
|
"area": float(cv2.contourArea(c)), |
|
|
"iscrowd": 0 |
|
|
}) |
|
|
ann_id += 1 |
|
|
|
|
|
img_id += 1 |
|
|
|
|
|
|
|
|
with open(output_json, "w") as f: |
|
|
json.dump(coco, f) |
|
|
|
|
|
print(f"Done. Saved {len(coco['images'])} images and {len(coco['annotations'])} polygons to {output_json}") |
|
|
|