--- license: mit base_model: indobenchmark/indobert-lite-base-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall language: - ind datasets: - indonli widget: - text: Andi tersenyum karena mendapat hasil baik. Andi sedih. model-index: - name: indobert-lite-base-p1-indonli-distil-mdeberta results: [] --- # IndoBERT Lite Base IndoNLI Distil mDeBERTa IndoBERT Lite Base IndoNLI Distil mDeBERTa is a natural language inference (NLI) model based on the [ALBERT](https://arxiv.org/abs/1909.11942) model. The model was originally the pre-trained [indobenchmark/indobert-lite-base-p1](https://huggingface.co/indobenchmark/indobert-lite-base-p1) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1], whilst being distilled from [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7). ## Evaluation Results | | `dev` Acc. | `test_lay` Acc. | `test_expert` Acc. | | --------- | :--------: | :-------------: | :----------------: | | `IndoNLI` | 77.19 | 74.42 | 61.22 | ## Model | Model | #params | Arch. | Training/Validation data (text) | | ----------------------------------------------- | ------- | ----------- | ------------------------------- | | `indobert-lite-base-p1-indonli-distil-mdeberta` | 11.7M | ALBERT Base | `IndoNLI` | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: `2e-05` - `train_batch_size`: `16` - `eval_batch_size`: `16` - `seed`: `42` - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `num_epochs`: `5` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | | :-----------: | :---: | :---: | :-------------: | :------: | :----: | :-------: | :----: | | 0.5053 | 1.0 | 646 | 0.4511 | 0.7506 | 0.7462 | 0.7530 | 0.7445 | | 0.4516 | 2.0 | 1292 | 0.4458 | 0.7692 | 0.7683 | 0.7684 | 0.7697 | | 0.4192 | 3.0 | 1938 | 0.4433 | 0.7701 | 0.7677 | 0.7685 | 0.7673 | | 0.3647 | 4.0 | 2584 | 0.4497 | 0.7720 | 0.7699 | 0.7697 | 0.7701 | | 0.3502 | 5.0 | 3230 | 0.4530 | 0.7679 | 0.7661 | 0.7658 | 0.7668 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0 ## References [1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics.