Laurie's picture
Add src folder
abbcb88
raw
history blame
11.8 kB
import os
import json
import torch
from typing import Any, Dict, List, Literal, Optional
from dataclasses import asdict, dataclass, field
@dataclass
class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
file_name: Optional[str] = None
file_sha1: Optional[str] = None
def __repr__(self) -> str:
if self.dataset_name is not None:
return self.dataset_name
else:
return self.file_name
def __post_init__(self):
self.prompt_column = "instruction"
self.query_column = "input"
self.response_column = "output"
self.history_column = None
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
)
use_fast_tokenizer: Optional[bool] = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Will use the token generated when running `huggingface-cli login`."}
)
model_revision: Optional[str] = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."}
)
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
default="nf4",
metadata={"help": "Quantization data type to use in int4 training."}
)
double_quantization: Optional[bool] = field(
default=True,
metadata={"help": "Whether to use double quantization in int4 training or not."}
)
compute_dtype: Optional[torch.dtype] = field(
default=None,
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
)
resume_lora_training: Optional[bool] = field(
default=True,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
)
plot_loss: Optional[bool] = field(
default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
)
def __post_init__(self):
if self.checkpoint_dir is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
if self.quantization_bit is not None:
assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization."
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
dataset: Optional[str] = field(
default="alpaca_zh",
metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."}
)
dataset_dir: Optional[str] = field(
default="data",
metadata={"help": "The name of the folder containing datasets."}
)
split: Optional[str] = field(
default="train",
metadata={"help": "Which dataset split to use for training and evaluation."}
)
overwrite_cache: Optional[bool] = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."}
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total input sequence length after tokenization."}
)
max_target_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total output sequence length after tokenization."}
)
max_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
)
eval_num_beams: Optional[int] = field(
default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}
)
ignore_pad_token_for_loss: Optional[bool] = field(
default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
)
source_prefix: Optional[str] = field(
default=None,
metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
dev_ratio: Optional[float] = field(
default=0,
metadata={"help": "Proportion of the dataset to include in the development set, should be between 0.0 and 1.0."}
)
prompt_template: Optional[str] = field(
default="alpaca",
metadata={"help": "Which template to use for constructing prompts in training and inference."}
)
def __post_init__(self): # support mixing multiple datasets
dataset_names = [ds.strip() for ds in self.dataset.split(",")]
with open(os.path.join(self.dataset_dir, "dataset_info.json"), "r") as f:
dataset_info = json.load(f)
self.dataset_list: List[DatasetAttr] = []
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in dataset_info.json.".format(name))
if "hf_hub_url" in dataset_info[name]:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr(
"file",
file_name=dataset_info[name]["file_name"],
file_sha1=dataset_info[name].get("file_sha1", None)
)
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
@dataclass
class FinetuningArguments:
"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
finetuning_type: Optional[Literal["none", "freeze", "lora", "full"]] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
)
num_layer_trainable: Optional[int] = field(
default=3,
metadata={"help": "Number of trainable layers for Freeze fine-tuning."}
)
name_module_trainable: Optional[Literal["mlp", "self_attn", "self_attention"]] = field(
default="mlp",
metadata={"help": "Name of trainable modules for Freeze fine-tuning. \
LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM choices: [\"mlp\", \"self_attention\"], \
Baichuan choices: [\"mlp\", \"self_attn\"]"}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
)
lora_alpha: Optional[float] = field(
default=32.0,
metadata={"help": "The scale factor for LoRA fine-tuning (similar with the learning rate)."}
)
lora_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_target: Optional[str] = field(
default="q_proj,v_proj",
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules. \
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
BLOOM choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
)
def __post_init__(self):
if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
self.lora_target = [target.strip() for target in self.lora_target.split(",")]
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [27 - k for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
self.trainable_layers = ["layers.{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
assert self.finetuning_type in ["none", "freeze", "lora", "full"], "Invalid fine-tuning method."
def save_to_json(self, json_path: str):
"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, json_path: str):
"""Creates an instance from the content of `json_path`."""
with open(json_path, "r", encoding="utf-8") as f:
text = f.read()
return cls(**json.loads(text))
@dataclass
class GeneratingArguments:
"""
Arguments pertaining to specify the decoding parameters.
"""
do_sample: Optional[bool] = field(
default=True,
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
)
temperature: Optional[float] = field(
default=0.95,
metadata={"help": "The value used to modulate the next token probabilities."}
)
top_p: Optional[float] = field(
default=0.7,
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."}
)
top_k: Optional[int] = field(
default=50,
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}
)
num_beams: Optional[int] = field(
default=1,
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
)
max_new_tokens: Optional[int] = field(
default=512,
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}
)
repetition_penalty: Optional[float] = field(
default=1.0,
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
)
def to_dict(self) -> Dict[str, Any]:
return asdict(self)