blip2-flan-t5-xxl / handler.py
sarang-shrivastava's picture
Update handler
cd7fc31
raw
history blame
4.64 kB
from typing import Dict, List, Any
# import transformers
# from transformers import AutoTokenizer
# import torch
from datetime import datetime
import torch
import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
class EndpointHandler():
def __init__(self, path=""):
self.processor = Blip2Processor.from_pretrained(path)
self.model = Blip2ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
logging.info('Model moved to device-' + self.device)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# self.model.eval()
# self.model.to(device=device, dtype=self.torch_dtype)
# self.generate_kwargs = {
# 'max_new_tokens': 512,
# 'temperature': 0.0001,
# 'top_p': 1.0,
# 'top_k': 0,
# 'use_cache': True,
# 'do_sample': True,
# 'eos_token_id': self.tokenizer.eos_token_id,
# 'pad_token_id': self.tokenizer.pad_token_id,
# "repetition_penalty": 1.1
# }
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# streamer = TextIteratorStreamer(
# self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
# )
## Model Parameters
# self.generate_kwargs['max_new_tokens'] = data['max_new_tokens'] if 'max_new_tokens' in data else self.generate_kwargs['max_new_tokens']
# self.generate_kwargs['temperature'] = data['temperature'] if 'temperature' in data else self.generate_kwargs['temperature']
# self.generate_kwargs['top_p'] = data['top_p'] if 'top_p' in data else self.generate_kwargs['top_p']
# self.generate_kwargs['top_k'] = data['top_k'] if 'top_k' in data else self.generate_kwargs['top_k']
# self.generate_kwargs['do_sample'] = data['do_sample'] if 'do_sample' in data else self.generate_kwargs['do_sample']
# self.generate_kwargs['repetition_penalty'] = data['repetition_penalty'] if 'repetition_penalty' in data else self.generate_kwargs['repetition_penalty']
## Prepare the inputs
batch_size = data.pop("batch_size",data)
# input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
# input_ids = input_ids.to(self.model.device)
# pip install accelerate
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
now = datetime.now()
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# question = "how many dogs are in the picture?"
# inputs = self.processor(raw_image, question, return_tensors="pt").to("cuda")
inputs = self.processor([raw_image]*batch_size, return_tensors="pt").to("cuda", torch.float16)
out = self.model.generate(**inputs)
# generated_text = self.processor.batch_decode(out, skip_special_tokens=True)[0].strip()
generated_text = self.processor.batch_decode(out, skip_special_tokens=True)
current = datetime.now()
# encoded_inp = self.tokenizer(inputs, return_tensors='pt', padding=True)
# for key, value in encoded_inp.items():
# encoded_inp[key] = value.to('cuda:0')
## Invoke the model
# with torch.no_grad():
# gen_tokens = self.model.generate(
# input_ids=encoded_inp['input_ids'],
# attention_mask=encoded_inp['attention_mask'],
# **generate_kwargs,
# )
# ## Decode using tokenizer
# decoded_gen = self.tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
# with torch.no_grad():
# output_ids = self.model.generate(input_ids, **self.generate_kwargs)
# # Slice the output_ids tensor to get only new tokens
# new_tokens = output_ids[0, len(input_ids[0]) :]
# output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
return [{"gen_text":generated_text, "time_elapsed": str(current-now)}]