--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - sentence-embedding license: apache-2.0 language: - fr metrics: - pearsonr - spearmanr --- # [bilingual-embedding-large](https://huggingface.co/Lajavaness/bilingual-embedding-large) bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [BGE M3](https://huggingface.co/BAAI/bge-m3), a pre-trained language model larged on the [BGE M3](https://huggingface.co/BAAI/bge-m3) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Training and Fine-tuning process #### Stage 1: NLI Training - Dataset: [(SNLI+XNLI) for english+french] - Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics. ### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark - Dataset: [STSB-fr and en] - Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library. ### Stage 4: Advanced Augmentation Fine-tuning - Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html) - Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy. ## Usage: Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer from pyvi.ViTokenizer import tokenize sentences = ["Paris est une capitale de la France", "Paris is a capital of France"] model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True) print(embeddings) ``` ## Evaluation TODO ## Citation @article{chen2024bge, title={Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation}, author={Chen, Jianlv and Xiao, Shitao and Zhang, Peitian and Luo, Kun and Lian, Defu and Liu, Zheng}, journal={arXiv preprint arXiv:2402.03216}, year={2024} } @article{conneau2019unsupervised, title={Unsupervised cross-lingual representation learning at scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={https://arxiv.org/abs/1908.10084}, year={2019} } @article{thakur2020augmented, title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks}, author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna}, journal={arXiv e-prints}, pages={arXiv--2010}, year={2020}