--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: cs split: None args: cs metrics: - name: Wer type: wer value: 35.16226470696578 --- # test This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3770 - Wer: 35.1623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3007 | 1.4440 | 1000 | 0.4410 | 41.9825 | | 0.1741 | 2.8881 | 2000 | 0.3800 | 36.4994 | | 0.0971 | 4.3321 | 3000 | 0.3751 | 35.3022 | | 0.079 | 5.7762 | 4000 | 0.3770 | 35.1623 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1