[paths] train = null dev = null vectors = null init_tok2vec = null [system] seed = 0 gpu_allocator = null [nlp] lang = "fr" pipeline = ["textcat"] disabled = [] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 1000 tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.textcat] factory = "textcat" scorer = {"@scorers":"spacy.textcat_scorer.v2"} threshold = 0.0 [components.textcat.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat.model.linear_model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = true length = 262144 ngram_size = 1 no_output_layer = false nO = null [components.textcat.model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [components.textcat.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 64 rows = [2000,2000,500,1000,500] attrs = ["NORM","LOWER","PREFIX","SUFFIX","SHAPE"] include_static_vectors = false [components.textcat.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 64 window_size = 1 maxout_pieces = 3 depth = 2 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} gold_preproc = false max_length = 0 limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} gold_preproc = false max_length = 0 limit = 0 augmenter = null [training] seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] dev_corpus = "corpora.dev" train_corpus = "corpora.train" before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] cats_score = 1.0 cats_score_desc = null cats_micro_p = null cats_micro_r = null cats_micro_f = null cats_macro_p = null cats_macro_r = null cats_macro_f = null cats_macro_auc = null cats_f_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]