{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb271b7bc00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687350034891995997, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIaSpj7iyq4/c+iuvxosAj/CulQ/zM2hv19uwT5REoo+K84VP7yNj0Ajq8o/xzmfP7gjtb/bwUQ+DRprvyM9oL0acuo/L2wWQF+XCr1IgRdA0P+KP5JGYUBHkoy/6yrLPzOApT9eLce/oRqEPg7k17/F3qE+jJw5P9aNMr7g+oM/jV4IP+SmlL+tdHw+eUG1Pz+shD4kBypAlt/CPnQJqD/z6bG/EhASPejrLb4pXXU/p8cOQL4H6L4NMxG/y+H4P3JjeT/ePSlACVuMv42MBEAzgKU/Xi3Hv6EahD4O5Ne/3KffPYDGhD6/oIc+LWcVQBu8RD4BbJU/aFgrvtv1O78AHEu/tTyivtFdoD9La4a+gQmnv79yQD5hA3a+ETbjvbT2gL7Bwa2/yI4KP7aIkzzD1Es+vMXvvxEgYz+8new+Nv5Fv02EJD+hGoQ+yMcXP0zznz+IBZE/0RBJv6WiFUCqA+E/QDRwP81VeD9p30G/ARGNPvATHz90Ng6+dQoDwPmOlz8UzMY/0VFMv2zCPz/T5tg+KVd8P2qWCj8N+I88S5V8v6eJ/r4+s1c++iEyvzb+Rb9NhCQ/oRqEPsjHFz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3XNm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/xAEPgAAAADgFN+/AAAAAKaKmD0AAAAAPhbnPwAAAAAxdrO9AAAAAG9HAEAAAAAAuHOOvQAAAACXivW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxyuxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFwjkr0AAAAAdwDkvwAAAAC7cu67AAAAAIsY2j8AAAAAG3m0PQAAAABrAfw/AAAAAHhIoL0AAAAA+qHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrwvzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA+Tru9AAAAAK4V378AAAAAZn9uuwAAAAAlp+o/AAAAADoybD0AAAAAgxb7PwAAAABaiNK9AAAAAB3E478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe8fY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQdMOwAAAABXkP2/AAAAACUyL7wAAAAAGG/8PwAAAAA2lq09AAAAAEKz5D8AAAAAAXEnvAAAAAAlrv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ0w71K5CniMAWyUTegDjAF0lEdAsJD53Tuv2XV9lChoBkdAl2vS7PIGQmgHTegDaAhHQLCU6w9q1w51fZQoaAZHQJx7fZg5R0loB03oA2gIR0CwlR8TJyQxdX2UKGgGR0Ca0fr+HaexaAdN6ANoCEdAsJXOP91loXV9lChoBkdAnJBeieumrWgHTegDaAhHQLCYU5wwTM91fZQoaAZHQJvoIpuuRtBoB03oA2gIR0Cwm4tVBD5TdX2UKGgGR0CahRDcuanaaAdN6ANoCEdAsJu/hVENOXV9lChoBkdAmSEm5UcXFmgHTegDaAhHQLCceWn0kGB1fZQoaAZHQJrdc60Y0l9oB03oA2gIR0CwoAqYNRWMdX2UKGgGR0Ccj9WhRIjGaAdN6ANoCEdAsKRhFEy+H3V9lChoBkdAm2u1Pi1iOWgHTegDaAhHQLCkl86mwaB1fZQoaAZHQJwuo1LrX19oB03oA2gIR0CwpVAG4ZuRdX2UKGgGR0CdG9+so2GZaAdN6ANoCEdAsKfY3IdU83V9lChoBkdAnaYz6i0v5GgHTegDaAhHQLCrEPYWcjJ1fZQoaAZHQJxadWU8mrtoB03oA2gIR0Cwq0YTwlSkdX2UKGgGR0CdmkIf8uSPaAdN6ANoCEdAsKv9PrOZ9nV9lChoBkdAmnDgE6kqMGgHTegDaAhHQLCvLaDwpfB1fZQoaAZHQJm+NwxWT5hoB03oA2gIR0Cws+jVH4GmdX2UKGgGR0CcVNhXr+o+aAdN6ANoCEdAsLQfKT0QLHV9lChoBkdAm8gvCqIacmgHTegDaAhHQLC012WpqAV1fZQoaAZHQJwx21fE4vNoB03oA2gIR0Cwt120AtFsdX2UKGgGR0CcaLanrIHUaAdN6ANoCEdAsLqj4XXRPXV9lChoBkdAnHswC8vmHWgHTegDaAhHQLC63TDO1OV1fZQoaAZHQJyyPSx7iQ1oB03oA2gIR0Cwu5ScPOIJdX2UKGgGR0Cc2423azu4aAdN6ANoCEdAsL6MPvrnknV9lChoBkdAnUG7qdH2AWgHTegDaAhHQLDDgKg7HQ11fZQoaAZHQJyB7t2LYPJoB03oA2gIR0Cww7U8FINFdX2UKGgGR0Cc1h9+w1R+aAdN6ANoCEdAsMRrhzeXRnV9lChoBkdAnD1+yE+PimgHTegDaAhHQLDG+T1CgK51fZQoaAZHQJwyyylenhtoB03oA2gIR0Cwyj3SKFZgdX2UKGgGR0B8ItqcmShbaAdN6ANoCEdAsMpz/vOQhnV9lChoBkdAnZNnCfpUxWgHTegDaAhHQLDLKDrZ8KJ1fZQoaAZHQJsBEoH9m6JoB03oA2gIR0CwzcSiVSn+dX2UKGgGR0CbTyCqZML4aAdN6ANoCEdAsNLDKT0QLHV9lChoBkdAnIovjwQUYmgHTegDaAhHQLDTGVy3kPt1fZQoaAZHQJqzcjZ+QU5oB03oA2gIR0Cw0/LxI8QqdX2UKGgGR0CcgxqiXY16aAdN6ANoCEdAsNaF2cJ+lXV9lChoBkdAmiiLvkRzzWgHTegDaAhHQLDZ2g13t8h1fZQoaAZHQJkJ685CF9NoB03oA2gIR0Cw2g41tO2zdX2UKGgGR0Ca1XziS7oTaAdN6ANoCEdAsNrIJeE7GXV9lChoBkdAmq2JH7P6bmgHTegDaAhHQLDdUhStNi91fZQoaAZHQJyGKoMrmQtoB03oA2gIR0Cw4jbMC9ytdX2UKGgGR0Cb8zASnLq2aAdN6ANoCEdAsOKLO8kD6nV9lChoBkdAnWguLBKtgmgHTegDaAhHQLDjs+4b0e51fZQoaAZHQJzfC2UjcEhoB03oA2gIR0Cw5keq3mV8dX2UKGgGR0Cbu5ci4axYaAdN6ANoCEdAsOmUM8YAKnV9lChoBkdAmlB4UFjd6GgHTegDaAhHQLDpylTWGyp1fZQoaAZHQJqS4mShakhoB03oA2gIR0Cw6oTJp35fdX2UKGgGR0CcAKStvGZNaAdN6ANoCEdAsO0U66reZXV9lChoBkdAm2eZ1aGHpWgHTegDaAhHQLDxsWsA/9p1fZQoaAZHQJvCDyOJcgRoB03oA2gIR0Cw8gfkWAPNdX2UKGgGR0CazQ3yI55raAdN6ANoCEdAsPMvG3nZCnV9lChoBkdAmv5S9AX2umgHTegDaAhHQLD2B2d/axp1fZQoaAZHQJoyuc6Nly1oB03oA2gIR0Cw+VM+u/1ydX2UKGgGR0CZUO7YChexaAdN6ANoCEdAsPmJLQHAynV9lChoBkdAmeJXSBshxGgHTegDaAhHQLD6QDCgsbx1fZQoaAZHQJtmmIHkcS5oB03oA2gIR0Cw/M1e4TbndX2UKGgGR0CYCcYMOPNnaAdN6ANoCEdAsQE7a/RE4XV9lChoBkdAlwTb1M/QjWgHTegDaAhHQLEBjnbZezF1fZQoaAZHQJjIrOD8LrpoB03oA2gIR0CxArViBoVVdX2UKGgGR0Cbfu3lS0jUaAdN6ANoCEdAsQXDFl05l3V9lChoBkdAmbW10cOsk2gHTegDaAhHQLEJGE0zj3p1fZQoaAZHQJmXz1g6U7loB03oA2gIR0CxCVC8J2MbdX2UKGgGR0CaslznA6+4aAdN6ANoCEdAsQoLATIvJ3V9lChoBkdAms41M/QjU2gHTegDaAhHQLEMmonrpq11fZQoaAZHQJeD+WQfZEloB03oA2gIR0CxELxmwqy4dX2UKGgGR0Cb0Jw6QvHtaAdN6ANoCEdAsRETrTpgTnV9lChoBkdAm6YH/1g6VGgHTegDaAhHQLESNA2ycCp1fZQoaAZHQJr3CmxdIG1oB03oA2gIR0CxFY4rnTy8dX2UKGgGR0CY2T51/2CeaAdN6ANoCEdAsRjayeI2wXV9lChoBkdAl/LahtcfNmgHTegDaAhHQLEZDwl0HQh1fZQoaAZHQJmGJ84PwuxoB03oA2gIR0CxGctXYDkmdX2UKGgGR0CbV80eEIw/aAdN6ANoCEdAsRxg1R+BpnV9lChoBkdAmuGymMwUQGgHTegDaAhHQLEgPqrilzl1fZQoaAZHQJtV/ZSNwR5oB03oA2gIR0CxII8EA5q/dX2UKGgGR0Ca2aLk0aZQaAdN6ANoCEdAsSG9cdHUdHV9lChoBkdAmredh3JPqWgHTegDaAhHQLElbnh86WB1fZQoaAZHQJyhLlgc94hoB03oA2gIR0CxKLzzundgdX2UKGgGR0Cc0S2HLzPKaAdN6ANoCEdAsSj0rd30PHV9lChoBkdAma8BG6PKdWgHTegDaAhHQLEpqnmJWNp1fZQoaAZHQJ4kxYRujypoB03oA2gIR0CxLDwztTkydX2UKGgGR0Ce62gkC3gDaAdN6ANoCEdAsS/f2IwdsHV9lChoBkdAnb+k0aZQYWgHTegDaAhHQLEwMBSk0rN1fZQoaAZHQJ4BAqhDgIhoB03oA2gIR0CxMUMaCL/CdX2UKGgGR0CdLwe4kNWmaAdN6ANoCEdAsTUriwSrYHV9lChoBkdAnW2f2bobGWgHTegDaAhHQLE4f/jKgZl1fZQoaAZHQJ0lEQf6oEVoB03oA2gIR0CxOLR33YcvdX2UKGgGR0Cbu1MmWt2caAdN6ANoCEdAsTlu9lEqlXV9lChoBkdAmRQbjtG/e2gHTegDaAhHQLE7+RMvh611fZQoaAZHQJeoe1QZXMhoB03oA2gIR0CxP2aNZNfxdX2UKGgGR0CY/N5OafBfaAdN6ANoCEdAsT+40vXbunV9lChoBkdAl3tqlgtvoGgHTegDaAhHQLFAz/DLr5Z1fZQoaAZHQJY2hBMSK3xoB03oA2gIR0CxRL0/jbSJdX2UKGgGR0CWUFcJdB0IaAdN6ANoCEdAsUgstPHktHV9lChoBkdAlu1xU3n6mGgHTegDaAhHQLFIYa72+PB1fZQoaAZHQJZ+0nNPgvVoB03oA2gIR0CxSRlwkxATdX2UKGgGR0CbJQ2St/4JaAdN6ANoCEdAsUufNQj2SXV9lChoBkdAltxBAB1cMWgHTegDaAhHQLFO5lfJFLF1fZQoaAZHQJpRNTAFgUloB03oA2gIR0CxTxue4Cp4dX2UKGgGR0CXoazV+Zw5aAdN6ANoCEdAsVAklXzUZ3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}