--- license: mit tags: - decompile - binary widget: - text: "# This is the assembly code:\n:\nendbr64\nlea (%rdi,%rsi,1),%eax\nretq\n# What is the source code?\n" --- ### 1. Introduction of LLM4Decompile LLM4Decompile aims to decompile x86 assembly instructions into C. The newly released V1.5 series are trained with a larger dataset (15B tokens) and a maximum token length of 4,096, with remarkable performance (up to 100% improvement) compared to the previous model. - **Github Repository:** [LLM4Decompile](https://github.com/albertan017/LLM4Decompile) ### 2. Evaluation Results | Model | HumanEval-Decompile | | | | | ExeBench | | | | | |:-----------------------:|:-------------------:|:------:|:------:|:------:|:------:|:--------:|:------:|:------:|:------:|:------:| | opt-level | O0 | O1 | O2 | O3 | Avg. | O0 | O1 | O2 | O3 | Avg. | | GPT4 | 0.1341 | 0.1890 | 0.1524 | 0.0854 | 0.1402 | TBD | TBD | TBD | TBD | TBD | | Deepseek-Coder-33B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | LLM4Decompile-6.7B-UO | 0.3720 | 0.1585 | 0.2134 | 0.2134 | 0.2393 | 0.0904 | 0.0988 | 0.0988 | 0.0950 | 0.0957 | | LLM4Decompile-1.3B-V1.5 | 0.4817 | 0.2463 | 0.2329 | 0.2280 | 0.2972 | 0.2076 | 0.1774 | 0.1721 | 0.1728 | 0.1824 | | LLM4Decompile-6.7B-V1.5 | 0.6927 | 0.4280 | 0.4134 | 0.3732 | 0.4768 | 0.2453 | 0.1999 | 0.1927 | 0.1938 | 0.2079 | ### 3. How to Use Here is an example of how to use our model (Revised for V1.5). Note: **Replace** func0 with the function name you want to decompile. **Preprocessing:** Compile the C code into binary, and disassemble the binary into assembly instructions. ```python import subprocess import os OPT = ["O0", "O1", "O2", "O3"] fileName = 'samples/sample' #'path/to/file' for opt_state in OPT: output_file = fileName +'_' + opt_state input_file = fileName+'.c' compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux subprocess.run(compile_command, shell=True, check=True) compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions subprocess.run(compile_command, shell=True, check=True) input_asm = '' with open(output_file+'.s') as f:#asm file asm= f.read() if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name raise ValueError("compile fails") asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name asm_clean = "" asm_sp = asm.split("\n") for tmp in asm_sp: if len(tmp.split("\t"))<3 and '00' in tmp: continue idx = min( len(tmp.split("\t")) - 1, 2 ) tmp_asm = "\t".join(tmp.split("\t")[idx:]) # remove the binary code tmp_asm = tmp_asm.split("#")[0].strip() # remove the comments asm_clean += tmp_asm + "\n" input_asm = asm_clean.strip() before = f"# This is the assembly code:\n"#prompt after = "\n# What is the source code?\n"#prompt input_asm_prompt = before+input_asm.strip()+after with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f: f.write(input_asm_prompt) ``` **Decompilation:** Use LLM4Decompile to translate the assembly instructions into C: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda() with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0 asm_func = f.read() inputs = tokenizer(asm_func, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=4000) c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1]) with open(fileName +'.c','r') as f:#original file func = f.read() print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions print(f'decompiled function:\n{c_func_decompile}') ``` ### 4. License This code repository is licensed under the MIT License. ### 5. Contact If you have any questions, please raise an issue.