gbl_chess_4 / tokenizer.py
gbl1357's picture
Create tokenizer.py
7c1895e verified
"""
Custom Chess Tokenizer for the Chess Challenge.
This tokenizer treats each move as a sequence of structured tokens derived from the
extended UCI notation from the Lichess dataset (e.g., WPe2e4, BNg8f6).
The dataset format uses:
- W/B prefix for White/Black
- Piece letter: P=Pawn, N=Knight, B=Bishop, R=Rook, Q=Queen, K=King
- Source and destination squares (e.g., e2e4)
- Special suffixes: (x)=capture, (+)=check, (+*)=checkmate, (o)/(O)=castling
"""
from __future__ import annotations
import json
import os
import re
from typing import Dict, List, Optional, Sequence, Union
from transformers import PreTrainedTokenizer
_MOVE_RE = re.compile(
r"^(?P<side>[WB])"
r"(?P<piece>[PNBRQK])"
r"(?P<src>[a-h][1-8])"
r"(?P<dst>[a-h][1-8])"
r"(?P<rest>.*)$"
)
class ChessTokenizer(PreTrainedTokenizer):
"""
A structured tokenizer for chess moves.
Each move is decomposed into:
SIDE_(W/B), PIECE_(P/N/B/R/Q/K), SQ_<src>, SQ_<dst>,
and optional flags: CAPTURE, CHECK, MATE, CASTLE, PROMO_(Q/R/B/N).
This avoids UNK explosions when using a move-as-token vocabulary.
"""
model_input_names = ["input_ids", "attention_mask"]
vocab_files_names = {"vocab_file": "vocab.json"}
# Special tokens
PAD_TOKEN = "[PAD]"
BOS_TOKEN = "[BOS]"
EOS_TOKEN = "[EOS]"
UNK_TOKEN = "[UNK]"
# Fixed token set
SIDE_W = "SIDE_W"
SIDE_B = "SIDE_B"
PIECES = ["P", "N", "B", "R", "Q", "K"]
PROMO_PREFIX = "PROMO_"
CAPTURE = "CAPTURE"
CHECK = "CHECK"
MATE = "MATE"
CASTLE = "CASTLE"
def __init__(
self,
vocab_file: Optional[str] = None,
vocab: Optional[Dict[str, int]] = None,
**kwargs,
):
kwargs.pop("pad_token", None)
kwargs.pop("bos_token", None)
kwargs.pop("eos_token", None)
kwargs.pop("unk_token", None)
self._pad_token = self.PAD_TOKEN
self._bos_token = self.BOS_TOKEN
self._eos_token = self.EOS_TOKEN
self._unk_token = self.UNK_TOKEN
if vocab is not None:
self._vocab = vocab
elif vocab_file is not None and os.path.exists(vocab_file):
with open(vocab_file, "r", encoding="utf-8") as f:
self._vocab = json.load(f)
else:
self._vocab = self._build_fixed_vocab()
self._ids_to_tokens = {v: k for k, v in self._vocab.items()}
super().__init__(
pad_token=self._pad_token,
bos_token=self._bos_token,
eos_token=self._eos_token,
unk_token=self._unk_token,
**kwargs,
)
def _build_fixed_vocab(self) -> Dict[str, int]:
special = [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN]
sides = [self.SIDE_W, self.SIDE_B]
pieces = [f"PIECE_{p}" for p in self.PIECES]
squares = [f"SQ_{file}{rank}" for file in "abcdefgh" for rank in "12345678"]
promos = [f"{self.PROMO_PREFIX}{p}" for p in ["Q", "R", "B", "N"]]
flags = [self.CAPTURE, self.CHECK, self.MATE, self.CASTLE]
tokens = special + sides + pieces + squares + promos + flags
return {tok: i for i, tok in enumerate(tokens)}
@classmethod
def build_vocab_from_dataset(cls, *args, **kwargs) -> "ChessTokenizer":
"""
Kept for API compatibility with the template training script.
This tokenizer uses a fixed vocabulary (no dataset-dependent pruning).
"""
return cls()
@classmethod
def build_vocab_from_iterator(cls, *args, **kwargs) -> "ChessTokenizer":
"""
Kept for API compatibility. This tokenizer uses a fixed vocabulary.
"""
return cls()
@property
def vocab_size(self) -> int:
return len(self._vocab)
def get_vocab(self) -> Dict[str, int]:
return dict(self._vocab)
def _tokenize(self, text: str) -> List[str]:
tokens: List[str] = []
moves = text.strip().split()
for mv in moves:
tokens.extend(self._tokenize_move(mv))
return tokens
def _tokenize_move(self, move: str) -> List[str]:
m = _MOVE_RE.match(move)
if not m:
return [self.UNK_TOKEN]
side = m.group("side")
piece = m.group("piece")
src = m.group("src")
dst = m.group("dst")
rest = m.group("rest") or ""
out: List[str] = []
out.append(self.SIDE_W if side == "W" else self.SIDE_B)
out.append(f"PIECE_{piece}")
out.append(f"SQ_{src}")
out.append(f"SQ_{dst}")
promo = self._parse_promotion(rest)
if promo is not None:
out.append(f"{self.PROMO_PREFIX}{promo}")
if "(x)" in rest or "x" in rest:
out.append(self.CAPTURE)
if "(+*)" in rest or "++" in rest or "#" in rest:
out.append(self.MATE)
elif "(+)" in rest or "+" in rest:
out.append(self.CHECK)
if "(o)" in rest or "(O)" in rest or "O-O" in rest:
out.append(self.CASTLE)
return out
def _parse_promotion(self, rest: str) -> Optional[str]:
m = re.search(r"=([QRBNqrbn])", rest)
if m:
return m.group(1).upper()
return None
def _convert_token_to_id(self, token: str) -> int:
return self._vocab.get(token, self._vocab[self.UNK_TOKEN])
def _convert_id_to_token(self, index: int) -> str:
return self._ids_to_tokens.get(index, self.UNK_TOKEN)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
special = {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN}
out: List[str] = []
for t in tokens:
if t in special:
continue
out.append(t)
return " ".join(out)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple:
if not os.path.isdir(save_directory):
os.makedirs(save_directory, exist_ok=True)
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
)
with open(vocab_file, "w", encoding="utf-8") as f:
json.dump(self._vocab, f, ensure_ascii=False, indent=2)
return (vocab_file,)
def decode(self, token_ids: Union[int, Sequence[int]], skip_special_tokens: bool = False, **kwargs) -> str:
if isinstance(token_ids, int):
ids = [token_ids]
elif "torch" in str(type(token_ids)):
ids = token_ids.detach().cpu().flatten().tolist()
else:
ids = list(token_ids)
toks = [self._convert_id_to_token(i) for i in ids]
if skip_special_tokens:
special = {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN}
toks = [t for t in toks if t not in special]
return self.convert_tokens_to_string(toks)