# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import Any, List, Optional, Tuple, Union import torch.distributed as dist import torch.utils.checkpoint import transformers from .conversation import get_conv_template from .modeling_internlm2 import InternLM2ForCausalLM from peft import LoraConfig, get_peft_model from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer, Qwen2ForCausalLM) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from transformers.activations import ACT2FN from timm.models.layers import DropPath from .configuration_internvl_chat import InternVLChatConfig from .modeling_intern_vit import InternVisionModel logger = logging.get_logger(__name__) torch.set_printoptions(threshold=float('inf')) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) def pixel_shuffle(x, scale_factor=0.5, ps_version='v2'): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def func_aggregation(x, image_ratio, h, w): x = x.reshape(image_ratio[0] * image_ratio[1], h, w, -1) x = x.transpose(1, 2) x = x.reshape(image_ratio[0], image_ratio[1] * w, h, x.shape[-1]) x = x.transpose(1, 2) x = x.reshape(1, image_ratio[0] * h, image_ratio[1] * w, x.shape[-1]) return x def func_transform(x, block_height, block_width): b = x.shape[0] C = x.shape[-1] num_blocks_height = x.shape[1] // block_height num_blocks_width = x.shape[2] // block_width x = x.reshape(b, num_blocks_height, block_height, num_blocks_width, block_width, C) x = x.transpose(3, 2) x = x.reshape(-1, block_height, block_width, C) x = x.view(-1, block_height * block_width, C) return x def func_padding(x, max_length=4): current_length = x.shape[1] C = x.shape[-1] if current_length < max_length: padding_length = max_length - current_length padded_tensor = torch.cat([x, torch.zeros([256, padding_length, C], dtype=x.dtype, device=x.device)], dim=1) else: padded_tensor = x attention_ones = torch.ones([256, 1, current_length], dtype=x.dtype, device=x.device) attention_zeros = torch.zeros([256, 1, max_length - current_length], dtype=x.dtype, device=x.device) attention_mask = torch.cat([attention_ones, attention_zeros], dim=2) attention_mask = attention_mask.to(dtype=torch.bool) return padded_tensor, attention_mask class InternRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ InternRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class InternAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, embed_dim, num_heads): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' f' {self.num_heads}).' ) self.scale = self.head_dim ** -0.5 self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.k = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.norm1 = InternRMSNorm(self.embed_dim) self.norm2 = InternRMSNorm(self.embed_dim) def _naive_attn(self, q, kv, mask=None): q = self.norm1(q) k = v = self.norm2(kv) B, N_q, C = q.shape N_kv = kv.shape[1] q = self.q(q).reshape(B, N_q, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = self.k(k).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) v = self.v(v).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = ((q * self.scale) @ k.transpose(-2, -1)) if mask is not None: attn = attn.masked_fill(mask.unsqueeze(1) == 0, float('-inf')) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N_q, C) x = self.proj(x) return x def forward(self, hidden_states_q: torch.Tensor, hidden_states_kv: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor: x = self._naive_attn(hidden_states_q, hidden_states_kv, attention_mask) return x class InternMLP(nn.Module): def __init__(self, embed_dim, act): super().__init__() self.act = ACT2FN[act] self.w1 = nn.Linear(embed_dim, 4 * embed_dim, bias=False) self.w3 = nn.Linear(embed_dim, 4 * embed_dim, bias=False) self.w2 = nn.Linear(4 * embed_dim, embed_dim, bias=False) self.norm = InternRMSNorm(embed_dim) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.norm(hidden_states) hidden_states = self.w2(self.act(self.w1(hidden_states)) * self.w3(hidden_states)) return hidden_states class InternEncoderLayer(nn.Module): def __init__(self, embed_dim): super().__init__() self.embed_dim = embed_dim self.num_heads = 16 self.act = 'silu' self.drop_path_rate = 0.1 self.attn = InternAttention(self.embed_dim, self.num_heads) self.mlp = InternMLP(self.embed_dim, self.act) self.drop_path1 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity() self.drop_path2 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity() def forward( self, hidden_states_q: torch.Tensor, hidden_states_kv: torch.Tensor, attn_mask: torch.Tensor = None ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: """ Args: hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` """ hidden_states = hidden_states_q + self.drop_path1(self.attn(hidden_states_q, hidden_states_kv, attn_mask)) hidden_states = hidden_states + self.drop_path2(self.mlp(hidden_states)) return hidden_states class VisionProjector(nn.Module): def __init__(self, vit_hidden_size, llm_hidden_size, downsample_ratio, ps_version, num_image_token): super().__init__() self.downsample_ratio = downsample_ratio self.ps_version = ps_version self.mlp1 = nn.Sequential( InternRMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size, bias=False), nn.SiLU() ) self.mlp2 = nn.Sequential( InternRMSNorm(vit_hidden_size), nn.Linear(vit_hidden_size, llm_hidden_size, bias=False), nn.SiLU() ) self.mlp3 = nn.Sequential( InternRMSNorm(vit_hidden_size), nn.Linear(vit_hidden_size, llm_hidden_size, bias=False), nn.SiLU() ) self.cls_scale = nn.Parameter(torch.randn([1, int(num_image_token ** 0.5), int(num_image_token ** 0.5), llm_hidden_size])) self.attn_global = InternEncoderLayer(llm_hidden_size) self.attn_local = InternEncoderLayer(llm_hidden_size) def forward(self, vit_embeds): cls_embds = vit_embeds[:, 0, :] vit_embeds = vit_embeds[:, 1:, :] b = vit_embeds.shape[0] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(b, h, w, -1) vit_embeds_q = pixel_shuffle(vit_embeds, self.downsample_ratio, self.ps_version) vit_embeds_q = self.mlp1(vit_embeds_q) vit_embeds_q = func_transform(vit_embeds_q, 1, 1) vit_embeds_cls = self.mlp2(cls_embds) vit_embeds_cls = vit_embeds_cls.reshape(b, 1, 1, -1).expand(-1, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1) cls_scale = self.cls_scale.expand(b, -1, -1, -1) vit_embeds_cls = vit_embeds_cls * cls_scale vit_embeds_cls = func_transform(vit_embeds_cls, 1, 1) vit_embeds_kv = self.mlp3(vit_embeds) vit_embeds_kv = func_transform(vit_embeds_kv, int(1 / self.downsample_ratio), int(1 / self.downsample_ratio)) vit_embeds_q = self.attn_local(vit_embeds_q, vit_embeds_kv) vit_embeds_cls = self.attn_global(vit_embeds_cls, vit_embeds_kv) vit_embeds = vit_embeds_q + vit_embeds_cls vit_embeds = vit_embeds.reshape(b, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1) return vit_embeds class InternVLChatModel(PreTrainedModel): config_class = InternVLChatConfig main_input_name = 'pixel_values' _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer', 'Phi3DecoderLayer', 'Qwen2DecoderLayer'] _supports_flash_attn_2 = True def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version self.llm_arch_name = config.llm_config.architectures[0] logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': self.language_model = InternLM2ForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Phi3ForCausalLM': self.language_model = Phi3ForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.projector = VisionProjector(vit_hidden_size, llm_hidden_size, self.downsample_ratio, self.ps_version, self.num_image_token) self.img_context_token_id = None self.conv_template = get_conv_template(self.template) if hasattr(config, 'system_message'): self.system_message = config.system_message else: self.system_message = self.conv_template.system_message self.num_samples = 0 if config.use_backbone_lora: self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) if config.use_llm_lora: self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) self.vision_model = get_peft_model(self.vision_model, lora_config) self.vision_model.print_trainable_parameters() def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): # Determine the target modules based on the architecture of the language model if self.llm_arch_name == 'InternLM2ForCausalLM': target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3'] elif self.llm_arch_name == 'Phi3ForCausalLM': target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj'] elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']: target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'] else: raise NotImplemented lora_config = LoraConfig( r=r, target_modules=target_modules, lora_alpha=lora_alpha, lora_dropout=lora_dropout, task_type='CAUSAL_LM' ) self.language_model = get_peft_model(self.language_model, lora_config) self.language_model.enable_input_require_grads() self.language_model.print_trainable_parameters() def extract_feature(self, pixel_values): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = self.projector(vit_embeds) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(template.sep)[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False): if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep)[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=True, **generate_kwargs, ) return outputs