--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-roberta-base-finetuned-semeval-new results: [] --- # CS221-roberta-base-finetuned-semeval-new This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3023 - F1: 0.6800 - Roc Auc: 0.7986 - Accuracy: 0.5811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.2592 | 1.0 | 1936 | 0.2815 | 0.6505 | 0.7740 | 0.5556 | | 0.2839 | 2.0 | 3872 | 0.2787 | 0.6510 | 0.7688 | 0.5700 | | 0.1879 | 3.0 | 5808 | 0.3023 | 0.6800 | 0.7986 | 0.5811 | | 0.1552 | 4.0 | 7744 | 0.3485 | 0.6573 | 0.7867 | 0.5548 | | 0.1182 | 5.0 | 9680 | 0.4063 | 0.6497 | 0.7833 | 0.5465 | | 0.0822 | 6.0 | 11616 | 0.4614 | 0.6510 | 0.7747 | 0.5654 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0