--- tags: - merge - mergekit - lazymergekit - NousResearch/Meta-Llama-3-8B-Instruct - elinas/Llama-3-8B-Ultra-Instruct - mlabonne/ChimeraLlama-3-8B-v3 - nvidia/Llama3-ChatQA-1.5-8B - Kukedlc/SmartLlama-3-8B-MS-v0.1 base_model: - NousResearch/Meta-Llama-3-8B-Instruct - elinas/Llama-3-8B-Ultra-Instruct - mlabonne/ChimeraLlama-3-8B-v3 - nvidia/Llama3-ChatQA-1.5-8B - Kukedlc/SmartLlama-3-8B-MS-v0.1 license: other --- # NeuralMiLLaMa-8B-slerp NeuralMiLLaMa-8B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) * [elinas/Llama-3-8B-Ultra-Instruct](https://huggingface.co/elinas/Llama-3-8B-Ultra-Instruct) * [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3) * [nvidia/Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B) * [Kukedlc/SmartLlama-3-8B-MS-v0.1](https://huggingface.co/Kukedlc/SmartLlama-3-8B-MS-v0.1) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: NousResearch/Meta-Llama-3-8B-Instruct parameters: density: 0.6 weight: 0.4 - model: elinas/Llama-3-8B-Ultra-Instruct parameters: density: 0.55 weight: 0.1 - model: mlabonne/ChimeraLlama-3-8B-v3 parameters: density: 0.55 weight: 0.2 - model: nvidia/Llama3-ChatQA-1.5-8B parameters: density: 0.55 weight: 0.2 - model: Kukedlc/SmartLlama-3-8B-MS-v0.1 parameters: density: 0.55 weight: 0.1 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralMiLLaMa-8B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```