--- license: apache-2.0 --- # Neural Krishna DPO ## Fine-tuning + lnegth(choose) - Training Args: ´´´python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False # Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=120, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=50, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, ) # Fine-tune model with DPO dpo_trainer.train() ´´´