{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b00f6b5d340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712043931547216260, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIVH8b50ZhA+WHDnvcRHBb81Maq+yFcLvgAAAAAAAAAAUCekPgfiCD5OKvm+zt6Ovj2aLT7xLBy+AAAAAAAAAADaEtk9hKjJPhXLdT7rvt6+OTKLvpTTwb0AAAAAAAAAAI3R0b0KZxI6HtpwvAfBMrykyqO7khB2vQAAAAAAAAAA9lUfP9Qr/b2QTeG6dZbKuUm9/T2T7Qq6AACAPwAAgD+a4Z07TFO7P4IJRT362uc9oZSIvFLc1bwAAAAAAAAAAGbMCr3Pjw8/KiFyPhLwBb84yGm+4nmDugAAAAAAAAAAapqnPjSvzz0mLYy9VXzrvqhWir4a36a7AAAAAAAAAAAAH/y8YR3BOy4u47xB5mC9RjMXvOUs6zwAAAAAAAAAAMamrD5tVJA/Ji7VPc84577mtQA/WeQBPgAAAAAAAAAAMKuTPgUk77s/68s8eRHcuWtOPb3dW7e6AACAPwAAgD+NXtY9p0i8P2Kg3z5iqoC9P1WIPH48ST4AAAAAAAAAAMAtSj8BFhs+Om0AP+/icr7TC1c+uj6RPgAAAAAAAAAAAHTpvReKUz8TEW68Mcsav/O8oL6VxNA9AAAAAAAAAAAze7u7TJWQP6NOfz4AVf++uRyXvr4ZvLwAAAAAAAAAABDwxz7bsmE/rgnMPkN/Br/cxT4+2MvvPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCBVdC3PRiSMAWyUS22MAXSUR0CFg7RfnfVJdX2UKGgGR8BAdUlRgqmTaAdLh2gIR0CFhIy4Wk8BdX2UKGgGR8Aegiu+yquKaAdLg2gIR0CFhRd8iOebdX2UKGgGR0A0ZcfNiYsvaAdLlmgIR0CFhkIu5BkadX2UKGgGR0BF6Kb8WKuTaAdLfWgIR0CFiL2OhkAhdX2UKGgGR7/kgi/wiJO4aAdLhWgIR0CFiWjSofjkdX2UKGgGR8BB2AuIyj59aAdLiGgIR0CFiYxwAEMcdX2UKGgGR8BOixmkFfReaAdLVmgIR0CFiiXb/Ot5dX2UKGgGR7/lNEofCAMEaAdLmGgIR0CFjJ+o99tudX2UKGgGR8A65HLzPKMeaAdLr2gIR0CFjLX6InBtdX2UKGgGR8BEBfh/Aj6faAdLk2gIR0CFjZJNj9XLdX2UKGgGR8Axkz9CNS62aAdLxWgIR0CFjeIfr8iwdX2UKGgGR8BI+4cNpdrwaAdLrWgIR0CFjfkvsZ5zdX2UKGgGR8Aj6orFwT/RaAdLxmgIR0CFjoOVgQYldX2UKGgGR8BZkWpyZKFqaAdLh2gIR0CFkZUy57PZdX2UKGgGR7//hYJVsDW9aAdLmmgIR0CFk7557gKndX2UKGgGR8BKnH/kvK2baAdLlGgIR0CFlAIFeOXFdX2UKGgGR7/0ckMTewcHaAdLq2gIR0CFlMy5Zr57dX2UKGgGR8A7fCyhSLqEaAdLc2gIR0CFlYLEUCaJdX2UKGgGR8A1p3sHB1s+aAdLh2gIR0CFlaovzvqkdX2UKGgGR8A57+ERJ2+xaAdLhGgIR0CFlmIk7fYSdX2UKGgGR0AyvTNMXaakaAdLfWgIR0CFlvc580DVdX2UKGgGR0BIVYyXUpd9aAdLrWgIR0CFmJqesgdPdX2UKGgGR8A+y/ACW/rTaAdLtWgIR0CFmstvn8sMdX2UKGgGR0Apk5XEIgNgaAdLc2gIR0CFnJEZzgdfdX2UKGgGR0Ax0ujASFoMaAdLoGgIR0CFoLM2WIGhdX2UKGgGR8A+avES/TLGaAdLlGgIR0CFobLL6k6+dX2UKGgGR8BUV6qOtGNJaAdLlmgIR0CFor5GjKxLdX2UKGgGR8BBT0GeMAFQaAdLomgIR0CFor4W1twadX2UKGgGR0A48+ueSSvDaAdLuWgIR0CFo++GoJiRdX2UKGgGR0ARWx3V09yMaAdLYmgIR0CFpRnlGPPtdX2UKGgGR0BFOSb6P8yfaAdN6ANoCEdAhaWOryUcGXV9lChoBkfAGLDPGACnxmgHS7RoCEdAhaYo8yN4q3V9lChoBkdAStC+10DEFWgHS5poCEdAhaf+fZmI03V9lChoBkfAWPSADq4YrWgHS+BoCEdAhavPwd8zAXV9lChoBkdALFwqZtvXLGgHS5xoCEdAhbCqe9SMtXV9lChoBkdAP+mugYgq3GgHS4NoCEdAhbJRx95Qg3V9lChoBkdALV9Vea8Yh2gHS5hoCEdAhbOSlWOp9HV9lChoBkfALDhYV6/qPmgHS5toCEdAhbSrQXyiEnV9lChoBkfAWTnci4axYGgHS8NoCEdAhbXmJm/WUnV9lChoBkfAQpeeYlY2bWgHS91oCEdAhbZJeE7GN3V9lChoBkdAVOjzND+irWgHTegDaAhHQIW5XFxXGOx1fZQoaAZHQEx1CiRGMGZoB0ukaAhHQIW5fgJkXk51fZQoaAZHwEz3ko4MnZ1oB0vlaAhHQIW7w5FPSD11fZQoaAZHv/uXMhX8wYdoB0ttaAhHQIXB6zw+dLB1fZQoaAZHwD+mM4tHxz9oB0uJaAhHQIXD2/xlQMx1fZQoaAZHwFQItGus90RoB0uXaAhHQIXG6GpMpPR1fZQoaAZHQEP7+0gKWs1oB0uZaAhHQIXIAeaKDTV1fZQoaAZHP/CPLxI8QqZoB0uWaAhHQIXKlFx4ptt1fZQoaAZHQEsclANXo1VoB0uuaAhHQIXKkbrC3w11fZQoaAZHQFu5Ft8/lhhoB03oA2gIR0CF9xGnXNC7dX2UKGgGR8Aq+0PYnOSoaAdLr2gIR0CF+K4e9zwMdX2UKGgGR8BULSV8kUsWaAdL92gIR0CF+ZkI5YHPdX2UKGgGR0BXKAljVhCuaAdN6ANoCEdAhgAUA93bEnV9lChoBkdAUSW7oSteU2gHTegDaAhHQIYDmFtbcGl1fZQoaAZHQCZc3EQ5FPVoB0u6aAhHQIYEDZcs1891fZQoaAZHwCdgkcCHRCxoB0uBaAhHQIYH2J79hql1fZQoaAZHQEO8uJUHY6JoB03oA2gIR0CGCYebNKRMdX2UKGgGR0BG+/e+Eh7maAdLj2gIR0CGCm9Mbm2cdX2UKGgGR0AfOsS00FbFaAdLrWgIR0CGCzundfsvdX2UKGgGR8AFAY77sOXmaAdLmGgIR0CGFg25QP7OdX2UKGgGR8BHDmjCYTkAaAdLxGgIR0CGGGZLqUu+dX2UKGgGR0BMBlF2FFlTaAdLhGgIR0CGG0ZF5OafdX2UKGgGR8BF/dXko4MnaAdLumgIR0CGHI7kn1FpdX2UKGgGR0Ba1B0EHMUzaAdN6ANoCEdAhiOmZ/kNnXV9lChoBkdAOG/n4fwI+mgHS5hoCEdAhi4vrv9cbHV9lChoBkfAFagHu7YkFGgHS65oCEdAhjMqbayrxXV9lChoBkfAPpEJWvKU3WgHS55oCEdAhjNNGNJe3XV9lChoBkfAPw85sCT2WmgHS5loCEdAhjO81O0sv3V9lChoBkfAUJrlJYkmhWgHTSMBaAhHQIY0y2WpqAV1fZQoaAZHQDa1W5paibloB0uYaAhHQIY5AKrq+rV1fZQoaAZHwE6ZDxb0OExoB0t3aAhHQIY/amhufmN1fZQoaAZHwCJ2pEQXhwVoB03oA2gIR0CGQQcghbGFdX2UKGgGR8An2e5Fw1iwaAdLYWgIR0CGQYmdAgPmdX2UKGgGR8AxDPkq+ajOaAdLbGgIR0CGRFT8YQ8PdX2UKGgGR8A+/zd1uBMBaAdLeGgIR0CGRQVoHs1LdX2UKGgGR8Bo1BmTTvy9aAdN6gJoCEdAhlBeZgG8mXV9lChoBkdAUjoPz4DcM2gHTegDaAhHQIZRwTqSowV1fZQoaAZHQCLLSXt0FKVoB0twaAhHQIZR3bmEGqx1fZQoaAZHwDB/0btJFspoB0tkaAhHQIZTrsWweNl1fZQoaAZHQCZYnlXA/LVoB0uXaAhHQIZVTiuMdcV1fZQoaAZHQFHvQLeANG5oB03oA2gIR0CGWSh/RVp9dX2UKGgGR8AD/wNLDhtMaAdLnGgIR0CGWqmQ8wHrdX2UKGgGR0BINPw/gR9PaAdN6ANoCEdAhmSoyTINmXV9lChoBkfAWGHg3tKIzmgHS49oCEdAhmVGig00nHV9lChoBkfAGwztkWhysGgHS3xoCEdAhmXmBOHnEHV9lChoBkfANhWW+oLofWgHS6poCEdAhmdnDziCKHV9lChoBkfAIjTo2XLNfWgHS6poCEdAhmh+lsP8RHV9lChoBkfAGlLjxTbWVmgHS4RoCEdAhmvdkSVW0nV9lChoBkdAVZwQQL/jsGgHTegDaAhHQIZsrTfBN211fZQoaAZHQFr0iLl3hXNoB03oA2gIR0CGcEPYFqzrdX2UKGgGR8BDV+Haews5aAdLtmgIR0CGcGAuqWC3dX2UKGgGR8A7R9vjwQUYaAdLYmgIR0CGcQnuRcNZdX2UKGgGR8A+ZRtgrpaBaAdL6GgIR0CGcWbc45tFdX2UKGgGR8A58k9U0elsaAdN6ANoCEdAhnOydWhh6XV9lChoBkdAEsElE7W/amgHS3poCEdAhnZcBltj1HV9lChoBkfAILpRGc4HX2gHS5FoCEdAhnaV14gRsnV9lChoBkdAPtYMOPNmlWgHS4poCEdAhncoQe3hGnV9lChoBkfAZuZ8iOearmgHTcMBaAhHQIZ7bSeAd4p1fZQoaAZHQERJUQ04zadoB0uSaAhHQIZ85/oaDPJ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 56, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}