File size: 1,943 Bytes
ee9e627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb52349
 
ee9e627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb52349
 
ee9e627
 
 
cb52349
ee9e627
 
 
 
 
cb52349
 
 
 
 
 
 
 
 
 
ee9e627
 
 
 
cb52349
 
ee9e627
cb52349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model_IMDB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model_IMDB

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4229
- Accuracy: 0.9307

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2892        | 1.0   | 782  | 0.2075          | 0.9192   |
| 0.151         | 2.0   | 1564 | 0.2034          | 0.9294   |
| 0.103         | 3.0   | 2346 | 0.2369          | 0.9270   |
| 0.0567        | 4.0   | 3128 | 0.2920          | 0.9306   |
| 0.0415        | 5.0   | 3910 | 0.3699          | 0.9275   |
| 0.025         | 6.0   | 4692 | 0.3560          | 0.9300   |
| 0.0204        | 7.0   | 5474 | 0.3690          | 0.9308   |
| 0.0125        | 8.0   | 6256 | 0.4119          | 0.9300   |
| 0.0117        | 9.0   | 7038 | 0.4176          | 0.9310   |
| 0.0065        | 10.0  | 7820 | 0.4229          | 0.9307   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.14.0