{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000019999DC95D0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679574213444113100, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gASViAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFhDOlxVc2Vyc1xrY2hvZGFyYVxBbmFjb25kYTNcZW52c1xybDJcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAL2pvAPyNrzLDFK8R8UhPbCKmT1cRAG+AACAPwAAgD8zmSO84cyHurl9r7sabhA3RCIvuijagrYAAIA/AACAPzPmLT1cVyG6R4EUvGI7K7MZQJ27qgBsMwAAgD8AAIA/M3UzvfYUK7odhC67m7PXtjEVkjteyEs6AACAPwAAgD9mBna8KcwvupKeoTjQvY01pqSaO1P9vrcAAIA/AACAP9rPnT0fdfG5loo0vaMyfbYlfH27HQDlNQAAgD8AAIA/7WY1Pp8viT9328E+6sHTvm6mjD7iWcA9AAAAAAAAAAAaoCW9j7YduurvMLmcaRm0bwbHum1PUjgAAIA/AACAPzMbQ70HYnY/Uo1VvUsNC7+ku/O9FEwSvQAAAAAAAAAAzVLxPI9SY7pvVpc6kS3ctEwpCLuW0625AACAPwAAgD8AoIO6XJNmumSDxzpm+ro1VtNmulYj5LkAAIA/AACAPxqgKL17eoC6cwBruWLaQLT5dKi62g+JOAAAgD8AAIA/AL+CvMPpWrori7C6oqDNtLwg7Lk+wc05AACAPwAAgD8ACpW84faQutKcqDlL5tE12TjpOvbEw7gAAIA/AACAP82u67x7CIy60aLJOkSMszWCFB07tpTpuQAAgD8AAIA/zQiTvK4VgLrq64Q6zRa6NQfFE7ofoZm5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEHf1KrL0YUCUhpRSlIwBbJRN6AOMAXSUR0CACcXhOxjbdX2UKGgGaAloD0MIIos08Y59ZkCUhpRSlGgVTegDaBZHQIAKnj6vaDh1fZQoaAZoCWgPQwhM4NbdvA5oQJSGlFKUaBVN6ANoFkdAgA0DTz/ZNHV9lChoBmgJaA9DCKNaRBQTf2NAlIaUUpRoFU3oA2gWR0CADZx+8XendX2UKGgGaAloD0MIgO7LmW15YUCUhpRSlGgVTegDaBZHQIAXWuFHrhR1fZQoaAZoCWgPQwitMH2voThnQJSGlFKUaBVN6ANoFkdAgCEcyN4qw3V9lChoBmgJaA9DCPLvMy6cY2ZAlIaUUpRoFU3oA2gWR0CAIpRc/t6YdX2UKGgGaAloD0MINQpJZnWFY0CUhpRSlGgVTegDaBZHQIAjPt4RmK91fZQoaAZoCWgPQwjl0viFV5NmQJSGlFKUaBVN6ANoFkdAgCOCO/+Kj3V9lChoBmgJaA9DCNnpB3WRmWlAlIaUUpRoFU3oA2gWR0CAJ5BIFvAHdX2UKGgGaAloD0MIXaYmwZtkZkCUhpRSlGgVTegDaBZHQIAnw1BMSK51fZQoaAZoCWgPQwhywoTRrNdmQJSGlFKUaBVN6ANoFkdAgCx6sySFG3V9lChoBmgJaA9DCD5bBwf7u2ZAlIaUUpRoFU3oA2gWR0CAL/2V3Ux3dX2UKGgGaAloD0MIkuwRaoZrYkCUhpRSlGgVTegDaBZHQIAwaqXF98Z1fZQoaAZoCWgPQwg9KZMa2tthQJSGlFKUaBVN6ANoFkdAgDSKDK5kLHV9lChoBmgJaA9DCI16iEb3xmVAlIaUUpRoFU3oA2gWR0CAT8biqABldX2UKGgGaAloD0MIk3Ahj+AJZECUhpRSlGgVTegDaBZHQIBQCjk+5e91fZQoaAZoCWgPQwgdd0oH6+JmQJSGlFKUaBVN6ANoFkdAgFD1D8cdYHV9lChoBmgJaA9DCEaZDTJJd2ZAlIaUUpRoFU3oA2gWR0CAU5yZKFqSdX2UKGgGaAloD0MIbEJaY9DjZUCUhpRSlGgVTegDaBZHQIBUSDh99c91fZQoaAZoCWgPQwgTtwpioB5kQJSGlFKUaBVN6ANoFkdAgF9qHGjsU3V9lChoBmgJaA9DCAPso1NXymZAlIaUUpRoFU3oA2gWR0CAaa8La24NdX2UKGgGaAloD0MIaqFkcupyZECUhpRSlGgVTegDaBZHQIBrCE8JUo91fZQoaAZoCWgPQwi7uI0G8IhpQJSGlFKUaBVN6ANoFkdAgGuTF2mpEXV9lChoBmgJaA9DCONrzyyJsGFAlIaUUpRoFU3oA2gWR0CAa8AEMb3odX2UKGgGaAloD0MIJxO3CmIEYUCUhpRSlGgVTegDaBZHQIBvoXqJMxp1fZQoaAZoCWgPQwhVFoVdFLJmQJSGlFKUaBVN6ANoFkdAgG/SgPEsKHV9lChoBmgJaA9DCG1wIvq1f05AlIaUUpRoFUuzaBZHQIBybV8Ti851fZQoaAZoCWgPQwjR6A5i56FhQJSGlFKUaBVN6ANoFkdAgHQT3h4t6HV9lChoBmgJaA9DCG5t4Xkp8GNAlIaUUpRoFU3oA2gWR0CAd25PM0P6dX2UKGgGaAloD0MIqBq9GqAkZ0CUhpRSlGgVTegDaBZHQIB3yB/Zuht1fZQoaAZoCWgPQwi2MXbCS2RTQJSGlFKUaBVLsWgWR0CAeAuPmxMWdX2UKGgGaAloD0MIdJmaBO86YECUhpRSlGgVTegDaBZHQIB7FENOM2p1fZQoaAZoCWgPQwgoDTUKyfxiQJSGlFKUaBVN6ANoFkdAgJaun/DLsHV9lChoBmgJaA9DCMdkcf+RGWFAlIaUUpRoFU3oA2gWR0CAlupm29csdX2UKGgGaAloD0MIXcR3YtYWaECUhpRSlGgVTegDaBZHQICXxmCiAUd1fZQoaAZoCWgPQwgct5ifG4VjQJSGlFKUaBVN6ANoFkdAgJphpQDV6XV9lChoBmgJaA9DCD+QvHMoPWBAlIaUUpRoFU3oA2gWR0CAmw05U96kdX2UKGgGaAloD0MIOEw0SMHQVECUhpRSlGgVS6toFkdAgKDIhY/3WXV9lChoBmgJaA9DCGgfK/jt32VAlIaUUpRoFU3oA2gWR0CApfOgQHzIdX2UKGgGaAloD0MIWI6QgbwQZkCUhpRSlGgVTegDaBZHQICxkZ9/jKh1fZQoaAZoCWgPQwieXFMgM0NkQJSGlFKUaBVN6ANoFkdAgLIq9GqgiHV9lChoBmgJaA9DCJvlstE5CGFAlIaUUpRoFU3oA2gWR0CAsl4s3AEddX2UKGgGaAloD0MIrFW7JqRNc0CUhpRSlGgVTagDaBZHQIC21PN3W4F1fZQoaAZoCWgPQwgGL/oKUjxiQJSGlFKUaBVN6ANoFkdAgLbbEgntwHV9lChoBmgJaA9DCMoa9RANY2lAlIaUUpRoFU3oA2gWR0CAu8KHfuTidX2UKGgGaAloD0MI0jk/xfGHYECUhpRSlGgVTegDaBZHQIC/Q46wMYx1fZQoaAZoCWgPQwgf+BisuI9mQJSGlFKUaBVN6ANoFkdAgL+xHG0eEXV9lChoBmgJaA9DCJyKVBjbr2BAlIaUUpRoFU3oA2gWR0CAv/6zE74jdX2UKGgGaAloD0MIj/rrFZZXY0CUhpRSlGgVTegDaBZHQIDDf/m1YyR1fZQoaAZoCWgPQwiV10roriJkQJSGlFKUaBVN6ANoFkdAgN9Vd5Y5k3V9lChoBmgJaA9DCKGFBIwuX2NAlIaUUpRoFU3oA2gWR0CA35KsdT5wdX2UKGgGaAloD0MIAYi7ehWHYECUhpRSlGgVTegDaBZHQIDjA2hqTKV1fZQoaAZoCWgPQwiMoDGTKC5gQJSGlFKUaBVN6ANoFkdAgOOxAbADaHV9lChoBmgJaA9DCBKifEELdmNAlIaUUpRoFU3oA2gWR0CA6QQo1DSgdX2UKGgGaAloD0MIAd2XM9stY0CUhpRSlGgVTegDaBZHQIDtxpUPxx11fZQoaAZoCWgPQwifWKfK96VjQJSGlFKUaBVN6ANoFkdAgPg2LxZuAXV9lChoBmgJaA9DCNkh/mFLf2ZAlIaUUpRoFU3oA2gWR0CA+LY1YQrddX2UKGgGaAloD0MIRn79EBv+Y0CUhpRSlGgVTegDaBZHQID44SQHRkV1fZQoaAZoCWgPQwjdlPJaiXlhQJSGlFKUaBVN6ANoFkdAgPy029+PR3V9lChoBmgJaA9DCNI6qpogNGRAlIaUUpRoFU3oA2gWR0CA/LbqQiiZdX2UKGgGaAloD0MIpRXfUHi9ZUCUhpRSlGgVTegDaBZHQIEBAyVObiJ1fZQoaAZoCWgPQwgId2ftNppoQJSGlFKUaBVN6ANoFkdAgQSXvH93r3V9lChoBmgJaA9DCKGfqdetfGhAlIaUUpRoFU3oA2gWR0CBBPvAoG6gdX2UKGgGaAloD0MIGXCWkmURZECUhpRSlGgVTegDaBZHQIEFP3i704B1fZQoaAZoCWgPQwhSQxuADfhiQJSGlFKUaBVN6ANoFkdAgQhDZL7GenV9lChoBmgJaA9DCBB6Nqu+R2ZAlIaUUpRoFU3oA2gWR0CBIQhib2DhdX2UKGgGaAloD0MIL6cExCQrZUCUhpRSlGgVTegDaBZHQIEhR86V+ql1fZQoaAZoCWgPQwgn9WVpJ7ljQJSGlFKUaBVN6ANoFkdAgSTInjQzDXV9lChoBmgJaA9DCFDIztvYFWdAlIaUUpRoFU3oA2gWR0CBJXKg7HQydX2UKGgGaAloD0MIMh8Q6Ew1ZkCUhpRSlGgVTegDaBZHQIEqrFfiPyV1fZQoaAZoCWgPQwgnFCLgEANiQJSGlFKUaBVN6ANoFkdAgS8STpxFRnV9lChoBmgJaA9DCNpXHqQn72FAlIaUUpRoFU3oA2gWR0CBOKep4rz5dX2UKGgGaAloD0MIPiMRGkECYkCUhpRSlGgVTegDaBZHQIE5KnBLwnZ1fZQoaAZoCWgPQwi8IvjfygNoQJSGlFKUaBVN6ANoFkdAgTlW56MR6HV9lChoBmgJaA9DCFOSdTi6w2BAlIaUUpRoFU3oA2gWR0CBPV9v0h/zdX2UKGgGaAloD0MIHqm+84s2ZUCUhpRSlGgVTegDaBZHQIE9Y4S6DoR1fZQoaAZoCWgPQwisG++ODOJkQJSGlFKUaBVN6ANoFkdAgUIUelsP8XV9lChoBmgJaA9DCEsDP6phHWZAlIaUUpRoFU3oA2gWR0CBRYdn003wdX2UKGgGaAloD0MIIy9rYoGzYUCUhpRSlGgVTegDaBZHQIFF66nR9gF1fZQoaAZoCWgPQwjpJ5zdWo5pQJSGlFKUaBVN6ANoFkdAgUY1VPva13V9lChoBmgJaA9DCPexgt8GFWhAlIaUUpRoFU3oA2gWR0CBSaYR/ViGdX2UKGgGaAloD0MIAtU/iOQWY0CUhpRSlGgVTegDaBZHQIFUeDJ2dNF1fZQoaAZoCWgPQwj2CaAYWbJnQJSGlFKUaBVN6ANoFkdAgVTP73wkPnV9lChoBmgJaA9DCDDZeLDFm2NAlIaUUpRoFU3oA2gWR0CBbDEfDDTCdX2UKGgGaAloD0MItAQZAZVPaUCUhpRSlGgVTegDaBZHQIFs+SOinHh1fZQoaAZoCWgPQwiA12fO+mRiQJSGlFKUaBVN6ANoFkdAgXPPjGT9sXV9lChoBmgJaA9DCAge3961BWZAlIaUUpRoFU3oA2gWR0CBeXxkNFz/dX2UKGgGaAloD0MIm1YKgVyeZkCUhpRSlGgVTegDaBZHQIGF0U0vXbx1fZQoaAZoCWgPQwhRTrSrEGVhQJSGlFKUaBVN6ANoFkdAgYZ1MmF8HHV9lChoBmgJaA9DCGR3gZIC+2RAlIaUUpRoFU3oA2gWR0CBhqpkwvg4dX2UKGgGaAloD0MI+HE0R1Y7Y0CUhpRSlGgVTegDaBZHQIGLxQm/nGN1fZQoaAZoCWgPQwhmEB/Y8TVjQJSGlFKUaBVN6ANoFkdAgYvLKvFFUnV9lChoBmgJaA9DCGsMOiF0P2RAlIaUUpRoFU3oA2gWR0CBkRzxwyZbdX2UKGgGaAloD0MIHJWbqKXWaECUhpRSlGgVTegDaBZHQIGVBnanJkp1fZQoaAZoCWgPQwiZgF8jSUplQJSGlFKUaBVN6ANoFkdAgZV5NoJzDHV9lChoBmgJaA9DCGGOHr+3LWZAlIaUUpRoFU3oA2gWR0CBlckC3gDSdX2UKGgGaAloD0MIIHwo0ZJsXkCUhpRSlGgVTegDaBZHQIGZfUc4o7V1fZQoaAZoCWgPQwj3kVuT7o9kQJSGlFKUaBVN6ANoFkdAgaQwuEmICXV9lChoBmgJaA9DCNqNPuYDGWJAlIaUUpRoFU3oA2gWR0CBpHQPZqVRdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gASViAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFhDOlxVc2Vyc1xrY2hvZGFyYVxBbmFjb25kYTNcZW52c1xybDJcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.7.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}