--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9998842940781709 - name: Recall type: recall value: 0.9998380192062941 - name: F1 type: f1 value: 0.9998611561068173 - name: Accuracy type: accuracy value: 0.999938944347773 --- # my_awesome_wnut_model This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 0.9999 - Recall: 0.9998 - F1: 0.9999 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0342 | 1.0 | 688 | 0.0063 | 0.9950 | 0.9917 | 0.9934 | 0.9956 | | 0.0117 | 2.0 | 1376 | 0.0015 | 0.9979 | 0.9974 | 0.9977 | 0.9988 | | 0.0049 | 3.0 | 2064 | 0.0006 | 0.9991 | 0.9994 | 0.9992 | 0.9995 | | 0.0017 | 4.0 | 2752 | 0.0001 | 0.9997 | 0.9997 | 0.9997 | 0.9999 | | 0.001 | 5.0 | 3440 | 0.0001 | 0.9999 | 0.9998 | 0.9999 | 0.9999 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3