I'll explain more about this model when I've found the optimal checkpoint for its use case it's been full fine-tuned on [Sandevistan](https://huggingface.co/datasets/Replete-AI/Sandevistan). Here is my Axolotl config (thanks to fizz and empti): ``` base_model: meta-llama/Meta-Llama-3-8B load_in_8bit: false load_in_4bit: false strict: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Kquant03/Sandevistan_Reformat type: customllama3_stan dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/out max_steps: 80000 fix_untrained_tokens: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: Pneuma wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 8 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 max_grad_norm: 1 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true eval_sample_packing: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true hub_model_id: Replete-AI/L3-Pneuma-8B hub_strategy: every_save warmup_steps: 10 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "<|begin_of_text|>" eos_token: "<|end_of_text|>" pad_token: "<|end_of_text|>" tokens: ``` This is the WandB loss for this section of the fine-tune: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/I2Z4-aVEQII0a-RZB1aQ-.png)