--- language: - "ko" tags: - "korean" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-korean-hanja license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "홍시 맛이 나서 홍시라 생각한다." - text: "紅柹 맛이 나서 紅柹라 生覺한다." --- # roberta-base-korean-morph-upos ## Model Description This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [roberta-base-korean-hanja](https://huggingface.co/KoichiYasuoka/roberta-base-korean-hanja) and [morphUD-korean](https://github.com/jungyeul/morphUD-korean). Every morpheme (형태소) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-korean-morph-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-korean-morph-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("홍시 맛이 나서 홍시라 생각한다.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-korean-morph-upos") print(nlp("홍시 맛이 나서 홍시라 생각한다.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models