#! /usr/bin/python3 src="KoichiYasuoka/modernbert-base-japanese-aozora-upos" tgt="KoichiYasuoka/modernbert-base-japanese-aozora-ud-square" url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW" import os,numpy d=os.path.basename(url) os.system("test -d "+d+" || git clone --depth=1 "+url) os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done") class UDSquareDataset(object): def __init__(self,conllu,tokenizer): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.seeks=[0] label=set(["SYM.","X.","X.|[goeswith]"]) s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] q="" if w[5]=="_" else "|"+w[5] r="|["+w[7]+"]" label.add(p+q) label.add(p+"."+q) label.add(p+q+r) label.add(p+"."+q+r) s=self.conllu.readline() self.label2id={l:i for i,l in enumerate(sorted(label))} def __call__(*args): lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} for t in args: t.label2id=lid return lid def __del__(self): self.conllu.close() __len__=lambda self:len(self.seeks)-1 def __getitem__(self,i): self.conllu.seek(self.seeks[i]) c,t=[],[""] while t[0]!="\n": t=self.conllu.readline().split("\t") if len(t)==10 and t[0].isdecimal(): c.append(t) h={t[6] for t in c} for t in c: if t[6]!="0" and t[0] not in h: t[3]+="." v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] for i in range(len(v)-1,-1,-1): if v[i]==[]: v[i]=[self.tokenizer.unk_token_id] if len(v[i])>1: c[i][3]=c[i][3].replace(".","") for j in range(1,len(v[i])): c.insert(i+1,[c[i][0],"_","_","X.","_","_",c[i][0],"goeswith","_","_"]) y=["0"]+[t[0] for t in c] h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)] p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for t in c] d=["|["+t[7]+"]" for t in c] x=[not t[3].endswith(".") for t in c] if len(x)<90: x=[True]*len(x) else: w=(sum([1 for b in x if b])+1)*(len(x)+1)+1 for i in numpy.argsort([-abs(j-i-1) for i,j in enumerate(h)]): if w+len(x)>8191: break if not x[i]: x[i]=True w+=len(x)+1 v=sum(v,[]) ids=[self.tokenizer.cls_token_id]+v+[self.tokenizer.sep_token_id] upos=["SYM."]+p+["SYM."] for i in range(len(v)): if x[i]: for j in range(len(v)): ids.append(self.tokenizer.mask_token_id if i==j else v[j]) upos.append(p[j]+d[j] if h[j]==i+1 else p[j]) ids.append(self.tokenizer.sep_token_id) upos.append("SYM.") return {"input_ids":ids,"labels":[self.label2id[p] for p in upos]} from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer tkz=AutoTokenizer.from_pretrained(src) trainDS=UDSquareDataset("train.conllu",tkz) devDS=UDSquareDataset("dev.conllu",tkz) testDS=UDSquareDataset("test.conllu",tkz) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True) mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) tkz.save_pretrained(tgt)