--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # bert-base-japanese-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models