from transformers import TokenClassificationPipeline,Qwen2Model,Qwen2PreTrainedModel from transformers.modeling_outputs import TokenClassifierOutput class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline): def __init__(self,**kwargs): import numpy super().__init__(**kwargs) x=self.model.config.label2id y=[k for k in x if not k.startswith("I-")] self.transition=numpy.full((len(x),len(x)),numpy.nan) for k,v in x.items(): for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y: self.transition[v,x[j]]=0 def check_model_type(self,supported_models): pass def postprocess(self,model_outputs,**kwargs): import numpy if "logits" not in model_outputs: return self.postprocess(model_outputs[0],**kwargs) m=model_outputs["logits"][0].numpy() e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True)) z=e/e.sum(axis=-1,keepdims=True) for i in range(m.shape[0]-1,0,-1): m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1) k=[numpy.nanargmax(m[0])] for i in range(1,m.shape[0]): k.append(numpy.nanargmax(m[i]+self.transition[k[-1]])) w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s